MOD = 998244353 def inverse(n, d): return n * pow(d, -1, MOD) % MOD def geometric_progression(a, r, n): # a = 初項 r = 公比 n = 項数 if r == 1: return a*n%MOD return a*((pow(r, n, MOD)-1)%MOD)%MOD*inverse(1, r-1)%MOD N, M = map(int, input().split()) ans = 0 for m in range(1, M+1): ans += m*geometric_progression((M-m+1)*pow(M, N-1, MOD)%MOD, (M-m+1)*inverse(1, M)%MOD, N)%MOD ans %= MOD if m < M: ans -= m*geometric_progression((M-m)*pow(M, N-1, MOD)%MOD, (M-m)*inverse(1, M)%MOD, N)%MOD ans %= MOD print(ans)