fn main() { input! { a: u64, b: u64, c: u64, d: u64, } let mut a = a; let mut b = b; let mut c = c; let mut d = d; if a * d < b * c { std::mem::swap(&mut a, &mut c); std::mem::swap(&mut b, &mut d); } let g = gcd(a, b); a /= g; b /= g; let g = gcd(c, d); c /= g; d /= g; if (a, b) == (c, d) { println!("-1"); return; } // (a/b - c/d)x >= 1 // (ad - bc) / bd * x >= 1 let x = b * d / (a * d - b * c); let ans = x - (floor_sum(x, 2 * b, 2 * a, 2 * a + b) - floor_sum(x, 2 * d, 2 * c, 2 * c + d)); println!("{}", ans); } fn gcd(a: u64, b: u64) -> u64 { if b == 0 { a } else { gcd(b, a % b) } } // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- // ---------- begin floor sum ---------- // sum_{i = 0}^{n - 1} floor((ai + b) / m) pub fn floor_sum(n: u64, m: u64, mut a: u64, mut b: u64) -> u64 { let mut ans = 0; ans += b / m * n; if n % 2 == 0 { ans += a / m * (n / 2) * (n - 1); } else { ans += a / m * n * ((n - 1) / 2); } a %= m; b %= m; let p = a * n + b; if p >= m { ans += floor_sum(p / m, a, m, p % m); } ans } // ---------- end floor sum ----------