def inv_gcd(a, b): a = a % b if a == 0: return (b, 0) s = b t = a m0 = 0 m1 = 1 while t: u = s // t s -= t * u m0 -= m1 * u s, t = t, s m0, m1 = m1, m0 if m0 < 0: m0 += b // s return (s, m0) def inv_mod(x, m): assert 1 <= m z = inv_gcd(x, m) assert z[0] == 1 return z[1] def crt(r, m): assert len(r) == len(m) n = len(r) r0 = 0 m0 = 1 for i in range(n): assert 1 <= m[i] r1 = r[i] % m[i] m1 = m[i] if m0 < m1: r0, r1 = r1, r0 m0, m1 = m1, m0 if m0 % m1 == 0: if r0 % m1 != r1: return (0, 0) continue g, im = inv_gcd(m0, m1) u1 = m1 // g if (r1 - r0) % g: return (0, 0) x = (r1 - r0) // g % u1 * im % u1 r0 += x * m0 m0 *= u1 if r0 < 0: r0 += m0 return (r0, m0) def floor_sum(n, m, a, b): ans = 0 while True: if a < 0 or a >= m: k = a // m a = a % m if a < 0: a += m k -= 1 ans += k * n * (n - 1) // 2 if b < 0 or b >= m: k = b // m b = b % m if b < 0: b += m k -= 1 ans += k * n y_max = (a * n + b) // m if y_max == 0: break x_max = y_max * m - b ans += (n - (x_max + a - 1) // a) * y_max n, m, a, b = y_max, a, m, (a - x_max % a) % a return ans A,B,C,D=map(int,input().split()) A*=2 B*=2 C*=2 D*=2 if A*D==B*C: print(-1) exit() A,B,C,D=A*D,B*D,C*B,D*B mx=B//abs(A-C) now=floor_sum(mx,B,A,A+B//2)-floor_sum(mx,D,C,C+D//2) print(mx-abs(now))