# 最小費用流(minimum cost flow) class MinCostFlow: def __init__(self, n): self.n = n self.G = [[] for i in range(n)] def add_edge(self, f, t, cap, cost): # [to, cap, cost, rev] self.G[f].append([t, cap, cost, len(self.G[t])]) self.G[t].append([f, 0, -cost, len(self.G[f])-1]) def flow(self, s, t, f): n = self.n G = self.G prevv = [0]*n; preve = [0]*n INF = 10**18+7 res = 0 while f: dist = [INF]*n dist[s] = 0 update = 1 while update: update = 0 for v in range(n): if dist[v] == INF: continue gv = G[v] for i in range(len(gv)): to, cap, cost, rev = gv[i] if cap > 0 and dist[v] + cost < dist[to]: dist[to] = dist[v] + cost prevv[to] = v; preve[to] = i update = 1 if dist[t] == INF: return -1 d = f; v = t while v != s: d = min(d, G[prevv[v]][preve[v]][1]) v = prevv[v] f -= d res += d * dist[t] v = t while v != s: e = G[prevv[v]][preve[v]] e[1] -= d G[v][e[3]][1] += d v = prevv[v] return res n, m = map(int, input().split()) A = [] for i in range(n): l = list(map(int, input().split())) if n % 2 and i == n // 2: continue A.append(l[:]) n -= n % 2 mf = MinCostFlow(n+2) M = 1 << 40 s = n t = s + 1 k = n // 2 for now in range(k): mf.add_edge(s, now, 1, 0) mf.add_edge(now+k, t, 1, 0) for nxt in range(k, 2*k): d = 0 for i in range(m): d = max(d, A[nxt][i] - A[now][i]) #print(now, nxt, d) mf.add_edge(now, nxt, 1, M-d) ans = mf.flow(s, t, k) print(M*k-ans)