#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define INIT std::ios::sync_with_stdio(false);std::cin.tie(0); #define VAR(type, ...)type __VA_ARGS__;Scan(__VA_ARGS__); template void Scan(T& t) { std::cin >> t; } templatevoid Scan(First& first, Rest&...rest) { std::cin >> first; Scan(rest...); } #define OUT(d) std::cout< c(n);for(auto& i:c)std::cin>>i; #define MAT(type, c, m, n) std::vector> c(m, std::vector(n));for(auto& r:c)for(auto& i:r)std::cin>>i; #define ALL(a) (a).begin(),(a).end() #define FOR(i, a, b) for(int i=(a);i<(b);++i) #define RFOR(i, a, b) for(int i=(b)-1;i>=(a);--i) #define REP(i, n) for(int i=0;i=0;--i) #define PAIR std::pair #define IN(a, x, b) (a<=x && x(end-start).count();std::cerr<<"[Time:"< tmp(a);std::cout << #a << "\t:";for(int i=0; i(a.size()); ++i){std::cout << tmp.front() << "\n";tmp.pop();}std::cout << "\n";} //#define int ll using ll = long long; using ull = unsigned long long; constexpr int INFINT = 1 << 30; constexpr ll INFLL = 1LL << 60; constexpr double EPS = 0.0000000001; constexpr int MOD = 1000000007; //組み合わせ(コンビネーション) ll fact[100005]; ll Factrial(ll n, ll mod) { if (fact[n] != 0) return fact[n]; if (n == 0) return fact[n] = 1; return fact[n] = std::fmod(Factrial(n - 1, mod)*n, mod); } ll RepeatSquaring(ll n, ll p, ll mod) { if (p == 0) return 1; if (p % 2 == 0) { ll t = RepeatSquaring(n, p / 2, mod); return t*t % mod; } return n*RepeatSquaring(n, p - 1, mod) % mod; } ll Combination(ll n, ll r, ll mod) { ll ans = 1; ans *= Factrial(n, mod); ans %= mod; ans *= RepeatSquaring(Factrial(n - r, mod), mod - 2, mod); ans %= mod; ans *= RepeatSquaring(Factrial(r, mod), mod - 2, mod); ans %= mod; return ans; } // n個をちょうどmグループに分ける場合の数 // -> Σ_{i=1}^m { (-1)^{m-i} × m_C_i × i^n } signed main() { INIT; VAR(ll, n, m); ll ans = 0; FOR(i, 1, m + 1) { ll t = (((m - i) % 2 == 0) ? 1 : -1) * Combination(m, i, MOD) * RepeatSquaring(i, n, MOD); ans = (ans+t%MOD+MOD)%MOD; } ans += MOD; ans %= MOD; OUT(ans)BR; return 0; }