# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, TypeVar T = TypeVar('T') class SortedSet(Generic[T]): BUCKET_RATIO = 16 SPLIT_RATIO = 24 def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) n = len(a) if any(a[i] > a[i + 1] for i in range(n - 1)): a.sort() if any(a[i] >= a[i + 1] for i in range(n - 1)): a, b = [], a for x in b: if not a or a[-1] != x: a.append(x) n = self.size = len(a) num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO))) self.a = [a[n * i // num_bucket: n * (i + 1) // num_bucket] for i in range(num_bucket)] def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1: len(s) - 1] + "}" def _position(self, x: T) -> tuple[list[T], int, int]: "return the bucket, index of the bucket and position in which x should be. self must not be empty." for i, a in enumerate(self.a): if x <= a[-1]: break return (a, i, bisect_left(a, x)) def __contains__(self, x: T) -> bool: if self.size == 0: return False a, _, i = self._position(x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a, b, i = self._position(x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.SPLIT_RATIO: mid = len(a) >> 1 self.a[b:b + 1] = [a[:mid], a[mid:]] return True def _pop(self, a: list[T], b: int, i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: del self.a[b] return ans def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a, b, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, b, i) return True def lt(self, x: T) -> T | None: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> T | None: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> T | None: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> T | None: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: "Pop and return the i-th element." if i < 0: for b, a in enumerate(reversed(self.a)): i += len(a) if i >= 0: return self._pop(a, ~b, i) else: for b, a in enumerate(self.a): if i < len(a): return self._pop(a, b, i) i -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans class IntervalSet: INF = 1 << 60 def __init__(self): self.ss = SortedSet() self.ss.add((IntervalSet.INF * 2, IntervalSet.INF)) # (r, l) def __len__(self): return len(self.ss) - 1 def __iter__(self): for r, l in self.ss: if l == IntervalSet.INF: break yield l, r def _overlap(self, l1: int, r1: int, l2: int, r2: int) -> int: """二つの半開区間 [l1, r1), [l2, r2) の重なりを求める""" assert l1 < r1 and l2 < r2 start = max(l1, l2) end = min(r1, r2) return max(0, end - start) def overlap_length(self, l: int, r: int) -> int: """半開区間 [l, r) との重なり幅を返す""" assert 0 <= l < r < IntervalSet.INF t = self.ss.ge((l+1, -1)) assert t is not None sr, sl = t # [sl, sr) if r < sl: return 0 if sl <= l and r <= sr: return r - l if r <= sr: return r - max(l, sl) wid = self._overlap(l, r, sl, sr) return wid + self.overlap_length(sr, r) def merge(self, l: int, r: int) -> tuple[int, int, int]: """ 半開区間 [l, r) をマージする。 マージ後の半開区間と、入力 [l, r) との重なり幅を返す return: 既存の区間との重なり総幅, マージ後の半開区間(l, r) """ assert 0 <= l < r t = self.ss.ge((l, -1)) assert t is not None sr, sl = t # [sl, sr) if r < sl: self.ss.add((r, l)) return 0, l, r if sl <= l and r <= sr: return r-l, sl, sr self.ss.discard(t) start = min(l, sl) if r <= sr: self.ss.add((sr, start)) return r-sl, start, sr wid, tl, tr = self.merge(start, r) wid += self._overlap(l, r, sl, sr) return wid, tl, tr class Compression: def __init__(self, iterable): self.vs = sorted(set(iterable)) self.v2i = {} for i, val in enumerate(self.vs): self.v2i[val] = i def __len__(self): return len(self.vs) def index(self, val): """val のインデックスを返す""" return self.v2i[val] def value(self, index): """インデックスに対応する値を返す""" return self.vs[index] def map(self, iterable): return [self.index(x) for x in iterable] class FenwickTree: def __init__(self, n: int): self.data = [0] * (n+10) self.n = (n+10) def add(self, p: int, x: int): assert 0 <= p < self.n p += 1 while p < len(self.data): self.data[p] += x p += p & -p def sum(self, p: int) -> int: """区間 [0, p] の和""" assert 0 <= p < self.n p += 1 s = 0 while p > 0: s += self.data[p] p -= p & -p return s def rangesum(self, l: int, r: int) -> int: """区間 [l, r] の和""" assert 0 <= l <= r < self.n s = self.sum(r) if l > 0: s -= self.sum(l-1) return s class RAQ: def __init__(self, n: int): self.a = FenwickTree(n + 10) self.b = FenwickTree(n + 10) self.n = n def add(self, l: int, r: int, x: int) -> None: """区間 [l, r] に x を加算""" assert 0 <= l <= r < self.n l += 1 r += 1 self.a.add(l, -x * (l - 1)) self.b.add(l, x) self.a.add(r + 1, x * r) self.b.add(r + 1, -x) def sum(self, l: int, r: int) -> int: """区間 [l, r] の和""" assert 0 <= l <= r < self.n l += 1 r += 1 a = self.a b = self.b res = a.sum(r) + b.sum(r) * r res -= a.sum(l - 1) + b.sum(l - 1) * (l - 1) return res def get(self, p: int) -> int: return self.sum(p, p) from collections import defaultdict N = int(input()) events = [] ts = set() for _ in range(N): ss = input().split() X = ss[0] L = int(ss[1]) R = int(ss[2]) events.append((X, L, R)) ts.add(L) ts.add(R) Q = int(input()) queries = [] for _ in range(Q): qs = input().split() match qs: case ('1', x, t): queries.append((1, x, int(t))) ts.add(int(t)) case ('2', t): queries.append((2, int(t))) ts.add(int(t)) case ('3', x, l, r): queries.append((3, x, int(l), int(r))) ts.add(int(l)) ts.add(int(r)) comp = Compression(ts) d = defaultdict(IntervalSet) raq = RAQ(len(comp)) for x, l, r in events: ltime = comp.index(l) rtime = comp.index(r) d[x].merge(ltime, rtime) raq.add(ltime, rtime, 1) for i in range(len(queries)): match queries[i]: case (1, x, t): time = comp.index(t) res = d[x].overlap_length(time, time+1) if res > 0: print('Yes') else: print('No') case (2, t): time = comp.index(t) print(raq.get(time)) case (3, x, l, r): ltime = comp.index(l) rtime = comp.index(r) d[x].merge(ltime, rtime) raq.add(ltime, rtime, 1)