#include #if __has_include() #endif using namespace std; #define eb emplace_back #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define RDVV(T,n,...) vec__VA_ARGS__;fe(refs(__VA_ARGS__),e)e.get().resizes(n);vin(__VA_ARGS__) #define VV(n,...) RDVV(ll,n,__VA_ARGS__) #define fo(i,...) for(auto[i,i##stop,i##step]=for_range(0,__VA_ARGS__);i{}) #define binary_operator(op,type) auto operator op(const type&rhs)const{auto copy=*this;return copy op##=rhs;} #define defpp templatevoid pp(const auto&...a){[[maybe_unused]]const char*c="";((o<(a...);} #define entry defpp void main();void main2();}int main(){my::io();my::main();}namespace my{ namespace my{ void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<constexpr auto for_range(T s,T b){T a=0;if(s)swap(a,b);return array{a-s,b,1-s*2};} const string space{char(32)}; void lin(auto&...a){(cin>>...>>a);} void vin(auto&...a){fo(i,(a.size()&...))(cin>>...>>a[i]);} template>auto&sort(auto&a,F f={}){ranges::sort(a,f);return a;} auto&unique(auto&a){sort(a).erase(ranges::unique(a).begin(),a.end());return a;} templateusing pack_back_t=tuple_element_t>; } namespace my{ templateclass FenwickTree{ public: ll n_; vectordata_; FenwickTree(ll n):n_(n),data_(n){} void add(ll i,T x){ assert(0<=i&&i0)res+=data_[r-1],r-=r&-r; while(l>0)res-=data_[l-1],l-=l&-l; return res; } }; } namespace my{ templateostream&operator<<(ostream&o,const vector&v){ll n=v.size();fo(i,n)o<constexpr int depth=0; templatestruct core_t_helper{using type=T;}; templateusing core_t=core_t_helper::type; templatestruct vec; templatestruct hvec_helper{using type=vec::type>;}; templatestruct hvec_helper<0,T>{using type=T;}; templateusing hvec=hvec_helper::type; templatestruct vec:vector{ static constexpr int D=depth+1; using C=core_t; using vector::vector; void resizes(const auto&...a){if constexpr(sizeof...(a)==D)*this=make(a...,C{});else{ }} static auto make(ll n,const auto&...a){ if constexpr(sizeof...(a)==1)return vec(n,array{a...}[0]); else { } } auto&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;} binary_operator(^,vec) vec&operator--(){fe(*this,e)--e;return*this;} ll size()const{return vector::size();} auto&emplace_back(auto&&...a){vector::emplace_back(std::forward(a)...);return*this;} auto lower_bound(const V&x)const{return std::lower_bound(this->begin(),this->end(),x);} ll arg_lower_bound(const V&x)const{return lower_bound(x)-this->begin();} }; templaterequires(sizeof...(A)>=2)vec(const A&...a)->vec>>; auto zip(auto&...a){auto v=(a^...);unique(v);([&](auto&u){fe(u,e)e=v.arg_lower_bound(e);}(a),...);return v;} } namespace my{entry void main(){ LL(N,Q); VV(N,a); VV(Q,l,r,x);--l; auto X=zip(a,x); ll H=X.size(); vec>event(H),query(H); fo(i,N)event[a[i]].eb(i); fo(q,Q)query[x[q]].eb(q); FenwickTreecnt(N),su(N); vecres(Q); fo(h,H){ fe(event[h],i){ cnt.add(i,1); su.add(i,X[h]); } fe(query[h],q)res[q]=X[h]*(r[q]-l[q]-cnt.sum(l[q],r[q]))+su.sum(l[q],r[q]); } pp(res); }}