#include #if __has_include() #endif using namespace std; #define eb emplace_back #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define RDVV(T,n,...) vec__VA_ARGS__;fe(refs(__VA_ARGS__),e)e.get().resizes(n);vin(__VA_ARGS__) #define VV(n,...) RDVV(ll,n,__VA_ARGS__) #define fo(i,...) for(auto[i,i##stop,i##step]=for_range(0,__VA_ARGS__);ivoid pp(const auto&...a){[[maybe_unused]]const char*c="";((o<(a...);} #define entry defpp void main();void main2();}int main(){my::io();my::main();}namespace my{ namespace my{ void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<constexpr auto for_range(T s,T b){T a=0;if(s)swap(a,b);return array{a-s,b,1-s*2};} void lin(auto&...a){(cin>>...>>a);} void vin(auto&...a){fo(i,(a.size()&...))(cin>>...>>a[i]);} constexpr ll size10(auto x){x|=1;ll r=0;while(x>0)x/=10,++r;return r;} templateconstexpr ll maxsize10(){return size10(numeric_limits::max());} bool amin(auto&a,const auto&b){return bstruct pair{ A a;B b; pair()=default; pair(A a,B b):a(a),b(b){} auto operator<=>(const pair&)const=default; }; templatestruct infinity{ templatestatic constexpr T ones(size_t n){return n?ones(n-1)*10+1:0;} templateconstexpr operator T()const{static constexpr T v=ones(maxsize10())*(1-is_negative*2);return v;} templateconstexpr bool operator==(const T&x)const{return static_cast(*this)==x;} }; constexpr infinity oo; template>auto&sort(auto&a,F f={}){ranges::sort(a,f);return a;} auto&unique(auto&a){sort(a).erase(ranges::unique(a).begin(),a.end());return a;} templateusing pack_back_t=tuple_element_t>; } namespace my{ templatestruct unordered_set:std::unordered_set{ unordered_set()=default; }; } namespace my{ templateconcept vectorial=is_base_of_v::value_type>,remove_cvref_t>; templateconstexpr int depth=0; templatestruct core_t_helper{using type=T;}; templateusing core_t=core_t_helper::type; templatestruct vec; templatestruct hvec_helper{using type=vec::type>;}; templatestruct hvec_helper<0,T>{using type=T;}; templateusing hvec=hvec_helper::type; templatestruct vec:vector{ static constexpr int D=depth+1; using C=core_t; using vector::vector; void resizes(const auto&...a){if constexpr(sizeof...(a)==D)*this=make(a...,C{});else{ }} static auto make(ll n,const auto&...a){ if constexpr(sizeof...(a)==1)return vec(n,array{a...}[0]); else { } } auto&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;} binary_operator(^,vec) ll size()const{return vector::size();} auto&emplace_back(auto&&...a){vector::emplace_back(std::forward(a)...);return*this;} auto pop_back(){auto r=this->back();vector::pop_back();return r;} auto lower_bound(const V&x)const{return std::lower_bound(this->begin(),this->end(),x);} ll arg_lower_bound(const V&x)const{return lower_bound(x)-this->begin();} auto fold(const auto&f)const{ pairr{}; fe(*this,e){ if constexpr(!vectorial){ if(r.b)f(r.a,e); else r={e,1}; }else { } } return r; } auto max()const{return fold([](auto&a,auto b){if(arequires(sizeof...(A)>=2)vec(const A&...a)->vec>>; auto zip(auto&...a){auto v=(a^...);unique(v);([&](auto&u){fe(u,e)e=v.arg_lower_bound(e);}(a),...);return v;} } namespace my{ templatestruct queue:std::queue{ queue(const initializer_list&a={}){fe(a,e)this->emplace(e);} ll size()const{return std::queue::size();} T pop(){T r=this->front();std::queue::pop();return r;} }; templatestruct priority_queue:std::priority_queue,F>{ priority_queue(const initializer_list&a={}){fe(a,e)this->emplace(e);} ll size()const{return std::priority_queue,F>::size();} T pop(){T r=this->top();std::priority_queue,F>::pop();return r;} }; templateusing min_heap=priority_queue>; } namespace my{ templatestruct Edge{ int from_,to_; WT wt_; int id_; Edge()=default; Edge(int from,int to,WT wt=1,int id=-1):from_(from),to_(to),wt_(wt),id_(id){} auto operator<=>(const Edge&e)const{return wt_<=>e.wt_;} }; templateclass Graph{ public: vec>>edges_; Graph()=default; Graph(ll n):edges_(n){} decltype(auto)operator[](ll i)const{return edges_[i];} ll size()const{return edges_.size();} void add_edge(ll a,auto&&...b){edges_[a].eb(a,std::forward(b)...);} auto&add_edges(const vec&a,const vec&b){fo(i,a.size())edges_[a[i]].eb(a[i],b[i],1,i);return*this;} auto in_deg_enumerate()const{ vecres(size()); fo(u,size())fe(edges_[u],e)++res[e.to_]; return res; } auto topological_order()const{ auto deg=in_deg_enumerate(); queueq; fo(i,size())if(deg[i]==0)q.emplace(i); vecr; while(q.size()){ ll u=q.pop(); r.eb(u); fe(edges_[u],e)if(--deg[e.to_]==0)q.emplace(e.to_); } return r; } Graph rev_graph()const{ Graph res(size()); fo(u,size())fe(edges_[u],e)res.add_edge(e.to_,e.from_,e.wt_,e.id_); return res; } auto dfs_post_order_groups()const{ vecused(size()); vec>res; fo(i,size())if(!used[i]){ res.eb(); vecst{i}; while(st.size()){ ll u=st.pop_back(); if(u>=0){ if(used[u])continue; used[u]=1; st.eb(~u); ef(edges_[u],e)if(!used[e.to_])st.eb(e.to_); }else{ res.back().eb(~u); } } } return res; } auto dijkstra_dist_enumerate(int s)const{ vecdist(size(),oo); dist[s]=WT{}; vecused(size()); min_heap>>q{{WT{},{-1,s,WT{},-1}}}; while(q.size()){ auto[du,pu]=q.pop(); auto u=pu.to_; if(dist[u]struct StronglyConnectedComponent:Graph{ vecgroup_id_; vec>group_; StronglyConnectedComponent(const Graph&g):group_id_(g.size(),-1){ auto rev_g=g.rev_graph(); ll n=0; ef(g.dfs_post_order_groups(),v)ef(v,u)if(group_id_[u]==-1)rev_dfs(u,n++,rev_g); this->edges_.resize(n); unordered_sets; ll N=g.size(); fo(u,N)fe(g[u],e){ ll x=group_id_[u],y=group_id_[e.to_]; if(x!=y&&!s.contains(x*N+y)){ this->add_edge(x,y,e.wt_,e.id_); s.emplace(x*N+y); } } group_.resize(n); fo(u,N)group_[group_id_[u]].eb(u); fe(group_,e)sort(e); } void rev_dfs(ll u,ll c,const Graph&rev_g){ if(group_id_[u]!=-1)return; group_id_[u]=c; fe(rev_g[u],e)rev_dfs(e.to_,c,rev_g); } }; } namespace my{entry void main(){ LL(N); VV(N,a,b); ll M=zip(a,b).size(); Graphg(M); g.add_edges(a,b); StronglyConnectedComponentscc(g); if(scc.size()==1){ pp(M); }else{ auto top=scc.topological_order(); auto dist=scc.dijkstra_dist_enumerate(top[0]); pp(dist.max()==oo?0:1); } }}