#include #if __has_include() #endif using namespace std; #define eb emplace_back #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define RDVV(T,n,...) vec__VA_ARGS__;fe(refs(__VA_ARGS__),e)e.get().resizes(n);vin(__VA_ARGS__) #define VV(n,...) RDVV(ll,n,__VA_ARGS__) #define fo(i,...) for(auto[i,i##stop,i##step]=for_range(0,__VA_ARGS__);ivoid pp(const auto&...a){[[maybe_unused]]const char*c="";((o<(a...);} #define entry defpp void main();void main2();}int main(){my::io();my::main();}namespace my{ namespace my{ void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<constexpr auto for_range(T s,T b){T a=0;if(s)swap(a,b);return array{a-s,b,1-s*2};} void lin(auto&...a){(cin>>...>>a);} void vin(auto&...a){fo(i,(a.size()&...))(cin>>...>>a[i]);} constexpr auto abs(auto x){return x<0?-x:x;} template>auto&sort(auto&a,F f={}){ranges::sort(a,f);return a;} auto&unique(auto&a){sort(a).erase(ranges::unique(a).begin(),a.end());return a;} templateusing pack_back_t=tuple_element_t>; } namespace my{ templateconstexpr int depth=0; templatestruct core_t_helper{using type=T;}; templateusing core_t=core_t_helper::type; templatestruct vec; templatestruct hvec_helper{using type=vec::type>;}; templatestruct hvec_helper<0,T>{using type=T;}; templateusing hvec=hvec_helper::type; templatestruct vec:vector{ static constexpr int D=depth+1; using C=core_t; using vector::vector; void resizes(const auto&...a){if constexpr(sizeof...(a)==D)*this=make(a...,C{});else{ }} static auto make(ll n,const auto&...a){ if constexpr(sizeof...(a)==1)return vec(n,array{a...}[0]); else { } } auto&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;} binary_operator(^,vec) ll size()const{return vector::size();} auto&emplace_back(auto&&...a){vector::emplace_back(std::forward(a)...);return*this;} auto lower_bound(const V&x)const{return std::lower_bound(this->begin(),this->end(),x);} ll arg_lower_bound(const V&x)const{return lower_bound(x)-this->begin();} }; templaterequires(sizeof...(A)>=2)vec(const A&...a)->vec>>; auto zip(auto&...a){auto v=(a^...);unique(v);([&](auto&u){fe(u,e)e=v.arg_lower_bound(e);}(a),...);return v;} } namespace my{ struct dsu_plain{ ll n_; vecpar_or_size_; dsu_plain(ll n):n_(n),par_or_size_(n,-1){} auto merge(ll a,ll b){ ll x=leader(a),y=leader(b); if(x==y)return x; if(-par_or_size_[x]<-par_or_size_[y])swap(x,y),swap(a,b); par_or_size_[x]+=par_or_size_[y]; par_or_size_[y]=x; return x; } ll leader(ll a){ if(par_or_size_[a]<0)return a; return par_or_size_[a]=leader(par_or_size_[a]); } auto groups(){ vecleader_buf(n_),group_size(n_); fo(u,n_){ leader_buf[u]=leader(u); group_size[leader_buf[u]]++; } vec>res(n_); fo(u,n_)res[u].reserve(group_size[u]); fo(u,n_)res[leader_buf[u]].eb(u); res.erase(remove_if(res.begin(),res.end(),[&](const vec& v){return v.empty();}),res.end()); return res; } }; } namespace my{ templatestruct Edge{ int from_,to_; WT wt_; int id_; Edge()=default; Edge(int from,int to,WT wt=1,int id=-1):from_(from),to_(to),wt_(wt),id_(id){} }; templateclass Graph{ public: vec>>edges_; Graph()=default; Graph(ll n):edges_(n){} decltype(auto)operator[](ll i)const{return edges_[i];} ll size()const{return edges_.size();} auto components()const{ dsu_plain uf(edges_.size()); fo(u,edges_.size())fe(edges_[u],e)uf.merge(u,e.to_); return uf.groups(); } auto&add_edges(const vec&a,const vec&b){fo(i,a.size())edges_[a[i]].eb(a[i],b[i],1,i);return*this;} }; } namespace my{ templatebool is_semi_eulerian_directed(const Graph&g){ vecdeg(g.size()); bool has_edge_component=0; fe(g.components(),v){ ll edge_count=0; fe(v,u)fe(g[u],e){ deg[u]--; deg[e.to_]++; edge_count++; } if(edge_count==0)continue; if(has_edge_component)return 0; has_edge_component=1; ll deg_m1=0,deg_p1=0; fe(v,u){ if(abs(deg[u])>=2)return 0; if(deg[u]==-1)deg_m1++; if(deg[u]==+1)deg_p1++; } if(deg_m1!=1||deg_p1!=1)return 0; } return 1; } templatebool is_eulerian_directed(const Graph&g){ vecdeg(g.size()); bool has_edge_component=0; fe(g.components(),v){ ll edge_count=0; fe(v,u)fe(g[u],e){ deg[u]--; deg[e.to_]++; edge_count++; } if(edge_count==0)continue; if(has_edge_component)return 0; has_edge_component=1; fe(v,u)if(deg[u]!=0)return 0; } return 1; } } namespace my{entry void main(){ LL(N); VV(N,a,b); ll M=zip(a,b).size(); Graphg(M); g.add_edges(a,b); if(is_eulerian_directed(g))pp(M); else if(is_semi_eulerian_directed(g))pp(1); else pp(0); }}