// BEGIN: main.cpp #line 1 "main.cpp" // BEGIN: my_template.hpp #line 1 "my_template.hpp" #if defined(LOCAL) #include #else #if defined(__GNUC__) #include #pragma GCC optimize("Ofast,unroll-loops") #pragma GCC target("avx2,popcnt") #endif #include using namespace std; using ll = long long; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template constexpr T infty = 0; template <> constexpr int infty = 1'010'000'000; template <> constexpr ll infty = 2'020'000'000'000'000'000; template <> constexpr u32 infty = infty; template <> constexpr u64 infty = infty; template <> constexpr i128 infty = i128(infty) * 2'000'000'000'000'000'000; template <> constexpr double infty = numeric_limits::infinity(); template <> constexpr long double infty = numeric_limits::infinity(); using pi = pair; using vi = vector; template using vc = vector; template using vvc = vector>; template using vvvc = vector>; template using vvvvc = vector>; template using pq_max = priority_queue; template using pq_min = priority_queue, greater>; #define vv(type, name, h, ...) \ vector> name(h, vector(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector>> name( \ h, vector>(w, vector(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector>>> name( \ a, vector>>( \ b, vector>(c, vector(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a) - 1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a) - 1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b) - 1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define all(x) (x).begin(), (x).end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); } int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template T kth_bit(int k) { return T(1) << k; } template bool has_kth_bit(T x, int k) { return x >> k & 1; } template struct all_bit { struct iter { UINT s; iter(UINT s) : s(s) {} int operator*() const { return lowbit(s); } iter &operator++() { s &= s - 1; return *this; } bool operator!=(const iter) const { return s != 0; } }; UINT s; all_bit(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template struct all_subset { static_assert(is_unsigned::value); struct iter { UINT s, t; bool ed; iter(UINT s) : s(s), t(s), ed(0) {} UINT operator*() const { return s ^ t; } iter &operator++() { (t == 0 ? ed = 1 : t = (t - 1) & s); return *this; } bool operator!=(const iter) const { return !ed; } }; UINT s; all_subset(UINT s) : s(s) {} iter begin() const { return iter(s); } iter end() const { return iter(0); } }; template T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template T ceil(T x, T y) { return floor(x + y - 1, y); } template T bmod(T x, T y) { return x - y * floor(x, y); } template pair divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } constexpr ll TEN[] = { 1LL, 10LL, 100LL, 1000LL, 10000LL, 100000LL, 1000000LL, 10000000LL, 100000000LL, 1000000000LL, 10000000000LL, 100000000000LL, 1000000000000LL, 10000000000000LL, 100000000000000LL, 1000000000000000LL, 10000000000000000LL, 100000000000000000LL, 1000000000000000000LL, }; template T SUM(const U &A) { return std::accumulate(A.begin(), A.end(), T{}); } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) template inline long long LB(const C &c, const T &x) { return lower_bound(c.begin(), c.end(), x) - c.begin(); } template inline long long UB(const C &c, const T &x) { return upper_bound(c.begin(), c.end(), x) - c.begin(); } #define UNIQUE(x) \ sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template T POP(deque &que) { T a = que.front(); que.pop_front(); return a; } template T POP(priority_queue &que) { T a = que.top(); que.pop(); return a; } template T POP(vc &que) { T a = que.back(); que.pop_back(); return a; } template ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (llabs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc s_to_vi(const string &S, char first_char) { vc A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template vc cumsum(const vc &A, int off = 1) { int N = A.size(); vc B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template vc argsort(const vc &A) { vc ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template vc rearrange(const vc &A, const vc &I) { vc B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template void concat(vc &first, const Vectors &...others) { vc &res = first; (res.insert(res.end(), others.begin(), others.end()), ...); } #endif // END: my_template.hpp #line 2 "main.cpp" // BEGIN: other/io.hpp #line 1 "other/io.hpp" #define FASTIO // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memmove(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template void rd_real(T &x) { string s; rd(s); x = stod(s); } template void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed::value || is_same_v) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed::value || is_same_v) { if (minus) x = -x; } } template enable_if_t || is_same_v || is_same_v> rd( T &x) { rd_integer(x); } template enable_if_t || is_same_v> rd(T &x) { rd_real(x); } template void rd(pair &p) { rd(p.first), rd(p.second); } template void rd_tuple(T &t) { if constexpr (N < tuple_size::value) { auto &x = get(t); rd(x); rd_tuple(t); } } template void rd(tuple &tpl) { rd_tuple(tpl); } template void rd(array &x) { for (auto &d : x) rd(d); } template void rd(vc &x) { for (auto &d : x) rd(d); } void read() {} template void read(H &h, T &...t) { rd(h), read(t...); } // 先に用意(既出なら不要) inline void wt_range(const char *s, size_t n) { size_t i = 0; while (i < n) { if (por == SZ) flush(); size_t chunk = min(n - i, (size_t)(SZ - por)); memcpy(obuf + por, s + i, chunk); por += chunk; i += chunk; } } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const char *s) { wt_range(s, strlen(s)); } void wt(const string &s) { wt_range(s.data(), s.size()); } template void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template inline void wt_real(T x) { char buf[64]; // 有効数字 15 桁、通常/指数を自動選択(printf("%.15g") 相当) int n = std::snprintf(buf, sizeof(buf), "%.15g", (double)x); // (任意)-0 を 0 に正規化 if (n == 2 && buf[0] == '-' && buf[1] == '0') { buf[0] = '0'; n = 1; } wt_range(buf, (size_t)n); } template enable_if_t || is_same_v || is_same_v> wt( T x) { wt_integer(x); } template enable_if_t || is_same_v> wt(T x) { wt_real(x); } inline void wt(bool b) { wt(static_cast('0' + (b ? 1 : 0))); } template void wt(const pair &val) { wt(val.first); wt(' '); wt(val.second); } template void wt_tuple(const T &t) { if constexpr (N < tuple_size::value) { if constexpr (N > 0) wt(' '); wt(get(t)); wt_tuple(t); } } template void wt(const tuple &tpl) { wt_tuple(tpl); } template void wt(const array &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template void wt(const vector &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template void print(Head &&head, Tail &&...tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::flush; using fastio::print; using fastio::read; #if defined(LOCAL) #define HDR "[DEBUG:", __func__, __LINE__, "]" #define SHOW(...) \ SHOW_IMPL(__VA_ARGS__, SHOW8, SHOW7, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, \ SHOW1) \ (__VA_ARGS__) #define SHOW_IMPL(_1, _2, _3, _4, _5, _6, _7, _8, NAME, ...) NAME #define SHOW1(x) print(HDR, #x, "=", (x)), flush() #define SHOW2(x, y) print(HDR, #x, "=", (x), #y, "=", (y)), flush() #define SHOW3(x, y, z) \ print(HDR, #x, "=", (x), #y, "=", (y), #z, "=", (z)), flush() #define SHOW4(x, y, z, w) \ print(HDR, #x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush() #define SHOW5(x, y, z, w, v) \ print(HDR, #x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", \ (v)), \ flush() #define SHOW6(x, y, z, w, v, u) \ print(HDR, #x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", \ (v), #u, "=", (u)), \ flush() #define SHOW7(x, y, z, w, v, u, t) \ print(HDR, #x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", \ (v), #u, "=", (u), #t, "=", (t)), \ flush() #define SHOW8(x, y, z, w, v, u, t, s) \ print(HDR, #x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", \ (v), #u, "=", (u), #t, "=", (t), #s, "=", (s)), \ flush() #else #define SHOW(...) #endif #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector name(size); \ read(name) #define VV(type, name, h, w) \ vector> name(h, vector(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } void YA(bool t = 1) { print(t ? "YA" : "TIDAK"); } void TIDAK(bool t = 1) { YA(!t); } // END: other/io.hpp #line 3 "main.cpp" // BEGIN: ds/wavelet_matrix/wavelet_matrix_2d_range.hpp #line 1 "ds/wavelet_matrix/wavelet_matrix_2d_range.hpp" // BEGIN: ds/wavelet_matrix/wavelet_matrix.hpp #line 1 "ds/wavelet_matrix/wavelet_matrix.hpp" // BEGIN: ds/bit_vector.hpp #line 1 "ds/bit_vector.hpp" struct Bit_Vector { int n; bool prepared = 0; vc> dat; Bit_Vector(int n = 0) : n(n) { dat.assign((n + 127) >> 6, {0, 0}); } void set(int i) { assert(!prepared && (0 <= i && i < n)); dat[i >> 6].fi |= u64(1) << (i & 63); } void reset() { fill(all(dat), pair{0, 0}); prepared = 0; } void build() { prepared = 1; FOR(i, len(dat) - 1) dat[i + 1].se = dat[i].se + popcnt(dat[i].fi); } // [0, k) 内の 1 の個数 bool operator[](int i) { return dat[i >> 6].fi >> (i & 63) & 1; } int count_prefix(int k, bool f = true) { assert(prepared); auto [a, b] = dat[k >> 6]; int ret = b + popcnt(a & ((u64(1) << (k & 63)) - 1)); return (f ? ret : k - ret); } int count(int L, int R, bool f = true) { return count_prefix(R, f) - count_prefix(L, f); } string to_string() { string ans; FOR(i, n) ans += '0' + (dat[i / 64].fi >> (i % 64) & 1); return ans; } }; // END: ds/bit_vector.hpp #line 2 "ds/wavelet_matrix/wavelet_matrix.hpp" // BEGIN: ds/index_compression.hpp #line 1 "ds/index_compression.hpp" template struct Index_Compression_DISTINCT_SMALL { static_assert(is_same_v); int mi, ma; vc dat; vc build(vc X) { mi = 0, ma = -1; if (!X.empty()) mi = MIN(X), ma = MAX(X); dat.assign(ma - mi + 2, 0); for (auto& x: X) dat[x - mi + 1]++; FOR(i, len(dat) - 1) dat[i + 1] += dat[i]; for (auto& x: X) { x = dat[x - mi]++; } FOR_R(i, 1, len(dat)) dat[i] = dat[i - 1]; dat[0] = 0; return X; } int operator()(ll x) { return dat[clamp(x - mi, 0, ma - mi + 1)]; } }; template struct Index_Compression_SAME_SMALL { static_assert(is_same_v); int mi, ma; vc dat; vc build(vc X) { mi = 0, ma = -1; if (!X.empty()) mi = MIN(X), ma = MAX(X); dat.assign(ma - mi + 2, 0); for (auto& x: X) dat[x - mi + 1] = 1; FOR(i, len(dat) - 1) dat[i + 1] += dat[i]; for (auto& x: X) { x = dat[x - mi]; } return X; } int operator()(ll x) { return dat[clamp(x - mi, 0, ma - mi + 1)]; } }; template struct Index_Compression_SAME_LARGE { vc dat; vc build(vc X) { vc I = argsort(X); vc res(len(X)); for (auto& i: I) { if (!dat.empty() && dat.back() == X[i]) { res[i] = len(dat) - 1; } else { res[i] = len(dat); dat.eb(X[i]); } } dat.shrink_to_fit(); return res; } int operator()(T x) { return LB(dat, x); } }; template struct Index_Compression_DISTINCT_LARGE { vc dat; vc build(vc X) { vc I = argsort(X); vc res(len(X)); for (auto& i: I) { res[i] = len(dat), dat.eb(X[i]); } dat.shrink_to_fit(); return res; } int operator()(T x) { return LB(dat, x); } }; template using Index_Compression_DISTINCT = typename std::conditional, Index_Compression_DISTINCT_LARGE>::type; template using Index_Compression_SAME = typename std::conditional, Index_Compression_SAME_LARGE>::type; // SAME: [2,3,2] -> [0,1,0] // DISTINCT: [2,2,3] -> [0,2,1] // build で列を圧縮してくれる. そのあと // (x): lower_bound(X,x) をかえす template using Index_Compression = typename std::conditional, Index_Compression_DISTINCT>::type; // END: ds/index_compression.hpp #line 3 "ds/wavelet_matrix/wavelet_matrix.hpp" // BEGIN: alg/monoid/add.hpp #line 1 "alg/monoid/add.hpp" template struct Monoid_Add { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; // END: alg/monoid/add.hpp #line 4 "ds/wavelet_matrix/wavelet_matrix.hpp" // 静的メソッドinverseの存在をチェックするテンプレート template > struct has_inverse : std::false_type {}; template struct has_inverse()))>> : std::true_type {}; struct Dummy_Data_Structure { using MX = Monoid_Add; void build(const vc& A) {} }; template struct Wavelet_Matrix { using Mono = typename SEGTREE::MX; using T = typename Mono::value_type; static_assert(Mono::commute); int n, log, K; Index_Compression IDX; vc ItoY; vc mid; vc bv; vc seg; Wavelet_Matrix() {} Wavelet_Matrix(const vc& A) { build(A); } Wavelet_Matrix(const vc& A, vc& SUM_Data) { build(A, SUM_Data); } template Wavelet_Matrix(int n, F f) { build(n, f); } template void build(int m, F f) { vc A(m); vc S(m); for (int i = 0; i < m; ++i) { auto p = f(i); A[i] = p.fi, S[i] = p.se; } build(A, S); } void build(const vc& A) { build(A, vc(len(A), Mono::unit())); } void build(const vc& A, vc S) { n = len(A); vc B = IDX.build(A); K = 0; for (auto& x: B) chmax(K, x + 1); ItoY.resize(K); FOR(i, n) ItoY[B[i]] = A[i]; log = 0; while ((1 << log) < K) ++log; mid.resize(log), bv.assign(log, Bit_Vector(n)); vc B0(n), B1(n); vc S0(n), S1(n); seg.resize(log + 1); seg[log].build(S); for (int d = log - 1; d >= 0; --d) { int p0 = 0, p1 = 0; for (int i = 0; i < n; ++i) { bool f = (B[i] >> d & 1); if (!f) { B0[p0] = B[i], S0[p0] = S[i], p0++; } if (f) { bv[d].set(i), B1[p1] = B[i], S1[p1] = S[i], p1++; } } swap(B, B0), swap(S, S0); move(B1.begin(), B1.begin() + p1, B.begin() + p0); move(S1.begin(), S1.begin() + p1, S.begin() + p0); mid[d] = p0, bv[d].build(), seg[d].build(S); } } // [L,R) x [0,y) int prefix_count(int L, int R, Y y) { int p = IDX(y); if (L == R || p == 0) return 0; if (p == K) return R - L; int cnt = 0; for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (p >> d & 1) cnt += r0 - l0, L = l1, R = r1; if (!(p >> d & 1)) L = l0, R = r0; } return cnt; } // [L,R) x [y1,y2) int count(int L, int R, Y y1, Y y2) { return prefix_count(L, R, y2) - prefix_count(L, R, y1); } // [L,R) x [0,y) pair prefix_count_and_prod(int L, int R, Y y) { int p = IDX(y); if (p == 0) return {0, Mono::unit()}; if (p == K) return {R - L, seg[log].prod(L, R)}; int cnt = 0; T t = Mono::unit(); for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (p >> d & 1) { cnt += r0 - l0, t = Mono::op(t, seg[d].prod(l0, r0)), L = l1, R = r1; } if (!(p >> d & 1)) L = l0, R = r0; } return {cnt, t}; } // [L,R) x [y1,y2) pair count_and_prod(int L, int R, Y y1, Y y2) { if constexpr (has_inverse::value) { auto [c1, t1] = prefix_count_and_prod(L, R, y1); auto [c2, t2] = prefix_count_and_prod(L, R, y2); return {c2 - c1, Mono::op(Mono::inverse(t1), t2)}; } int lo = IDX(y1), hi = IDX(y2), cnt = 0; T t = Mono::unit(); auto dfs = [&](auto& dfs, int d, int L, int R, int a, int b) -> void { assert(b - a == (1 << d)); if (hi <= a || b <= lo) return; if (lo <= a && b <= hi) { cnt += R - L, t = Mono::op(t, seg[d].prod(L, R)); return; } --d; int c = (a + b) / 2; int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; dfs(dfs, d, l0, r0, a, c), dfs(dfs, d, l1, r1, c, b); }; dfs(dfs, log, L, R, 0, 1 << log); return {cnt, t}; } // [L,R) x [y1,y2) T prefix_prod(int L, int R, Y y) { return prefix_count_and_prod(L, R, y).se; } // [L,R) x [y1,y2) T prod(int L, int R, Y y1, Y y2) { return count_and_prod(L, R, y1, y2).se; } T prod_all(int L, int R) { return seg[log].prod(L, R); } Y kth(int L, int R, int k) { assert(0 <= k && k < R - L); int p = 0; for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (k < r0 - l0) { L = l0, R = r0; } else { k -= r0 - l0, L = l1, R = r1, p |= 1 << d; } } return ItoY[p]; } // y 以上最小 OR infty Y next(int L, int R, Y y) { int k = IDX(y); int p = K; auto dfs = [&](auto& dfs, int d, int L, int R, int a, int b) -> void { if (p <= a || L == R || b <= k) return; if (d == 0) { chmin(p, a); return; } --d; int c = (a + b) / 2; int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; dfs(dfs, d, l0, r0, a, c), dfs(dfs, d, l1, r1, c, b); }; dfs(dfs, log, L, R, 0, 1 << log); return (p == K ? infty : ItoY[p]); } // y 以下最大 OR -infty Y prev(int L, int R, Y y) { int k = IDX(y + 1); int p = -1; auto dfs = [&](auto& dfs, int d, int L, int R, int a, int b) -> void { if (b - 1 <= p || L == R || k <= a) return; if (d == 0) { chmax(p, a); return; } --d; int c = (a + b) / 2; int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; dfs(dfs, d, l1, r1, c, b), dfs(dfs, d, l0, r0, a, c); }; dfs(dfs, log, L, R, 0, 1 << log); return (p == -1 ? -infty : ItoY[p]); } Y median(bool UPPER, int L, int R) { assert(0 <= L && L < R && R <= n); int k = (UPPER ? (R - L) / 2 : (R - L - 1) / 2); return kth(L, R, k); } pair kth_value_and_prod(int L, int R, int k) { assert(0 <= k && k <= R - L); if (k == R - L) return {infty, seg[log].prod(L, R)}; int p = 0; T t = Mono::unit(); for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (k < r0 - l0) { L = l0, R = r0; } else { t = Mono::op(t, seg[d].prod(l0, r0)), k -= r0 - l0, L = l1, R = r1, p |= 1 << d; } } t = Mono::op(t, seg[0].prod(L, L + k)); return {ItoY[p], t}; } T prod_index_range(int L, int R, int k1, int k2) { static_assert(has_inverse::value); T t1 = kth_value_and_prod(L, R, k1).se; T t2 = kth_value_and_prod(L, R, k2).se; return Mono::op(Mono::inverse(t1), t2); } // [L,R) x [0,y) での check(y, cnt, prod) が true となる最大の (cnt,prod) // ただし y はぴったりのところだけです template tuple max_right(F check, int L, int R) { int cnt = 0; int p = 0; T t = Mono::unit(); assert(check(-infty, 0, Mono::unit())); if (check(infty, R - L, seg[log].prod(L, R))) { return {infty, R - L, seg[log].prod(L, R)}; } for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; int cnt1 = cnt + r0 - l0; int p1 = p | 1 << d; T t1 = Mono::op(t, seg[d].prod(l0, r0)); int y1 = (p1 < len(ItoY) ? ItoY[p1] : infty); if (check(y1, cnt1, t1)) { p = p1, cnt = cnt1, t = t1, L = l1, R = r1; } else { L = l0, R = r0; } } int y = (p < len(ItoY) ? ItoY[p] : infty); return {y, cnt, t}; } void set(int i, T t) { assert(0 <= i && i < n); int L = i, R = i + 1; seg[log].set(L, t); for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (l0 < r0) L = l0, R = r0; if (l0 == r0) L = l1, R = r1; seg[d].set(L, t); } } void multiply(int i, T t) { assert(0 <= i && i < n); int L = i, R = i + 1; seg[log].multiply(L, t); for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count_prefix(L, 0), r0 = bv[d].count_prefix(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (l0 < r0) L = l0, R = r0; if (l0 == r0) L = l1, R = r1; seg[d].multiply(L, t); } } void add(int i, T t) { multiply(i, t); } }; // END: ds/wavelet_matrix/wavelet_matrix.hpp #line 2 "ds/wavelet_matrix/wavelet_matrix_2d_range.hpp" template struct Wavelet_Matrix_2D_Range { // 点群を X 昇順に並べる. Wavelet_Matrix WM; using Mono = typename SEGTREE::MX; using T = typename Mono::value_type; static_assert(Mono::commute); Index_Compression IDX_X; int n; vc new_idx; template Wavelet_Matrix_2D_Range(int n, F f) { build(n, f); } template void build(int m, F f) { n = m; vc X(n), Y(n); vc S(n); FOR(i, n) { auto tmp = f(i); X[i] = get<0>(tmp), Y[i] = get<1>(tmp), S[i] = get<2>(tmp); } new_idx = IDX_X.build(X); vc I(n); FOR(i, n) I[new_idx[i]] = i; Y = rearrange(Y, I); S = rearrange(S, I); WM.build(Y, S); } int count(XY x1, XY x2, XY y1, XY y2) { return WM.count(IDX_X(x1), IDX_X(x2), y1, y2); } // [L,R) x [-inf,y) pair prefix_count_and_prod(XY x1, XY x2, XY y) { return WM.prefix_count_and_prod(IDX_X(x1), IDX_X(x2), y); } // [L,R) x [y1,y2) pair count_and_prod(XY x1, XY x2, XY y1, XY y2) { return WM.count_and_prod(IDX_X(x1), IDX_X(x2), y1, y2); } // [L,R) x [-inf,inf) T prod_all(XY x1, XY x2) { return WM.prod_all(IDX_X(x1), IDX_X(x2)); } // [L,R) x [-inf,y) T prefix_prod(XY x1, XY x2, XY y) { return WM.prefix_prod(IDX_X(x1), IDX_X(x2), y); } // [L,R) x [y1,y2) T prod(XY x1, XY x2, XY y1, XY y2) { return WM.prod(IDX_X(x1), IDX_X(x2), y1, y2); } // [L,R) x [-inf,y) での check(cnt, prod) が true となる最大の (cnt,prod) template pair max_right(F check, XY x1, XY x2) { return WM.max_right(check, IDX_X(x1), IDX_X(x2)); } // i は最初に渡したインデックス void set(int i, T t) { WM.set(new_idx[i], t); } // i は最初に渡したインデックス void multiply(int i, T t) { WM.multiply(new_idx[i], t); } void add(int i, T t) { WM.multiply(new_idx[i], t); } };// END: ds/wavelet_matrix/wavelet_matrix_2d_range.hpp #line 5 "main.cpp" #line 6 "main.cpp" // BEGIN: ds/fenwicktree/fenwicktree_01.hpp #line 1 "ds/fenwicktree/fenwicktree_01.hpp" // BEGIN: ds/fenwicktree/fenwicktree.hpp #line 1 "ds/fenwicktree/fenwicktree.hpp" #line 3 "ds/fenwicktree/fenwicktree.hpp" template struct FenwickTree { using G = Monoid; using MX = Monoid; using E = typename G::value_type; int n; vector dat; E total; FenwickTree() {} FenwickTree(int n) { build(n); } template FenwickTree(int n, F f) { build(n, f); } FenwickTree(const vc& v) { build(v); } void build(int m) { n = m; dat.assign(m, G::unit()); total = G::unit(); } void build(const vc& v) { build(len(v), [&](int i) -> E { return v[i]; }); } template void build(int m, F f) { n = m; dat.clear(); dat.reserve(n); total = G::unit(); FOR(i, n) { dat.eb(f(i)); } for (int i = 1; i <= n; ++i) { int j = i + (i & -i); if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]); } total = prefix_sum(m); } E prod_all() { return total; } E sum_all() { return total; } E sum(int k) { return prefix_sum(k); } E prod(int k) { return prefix_prod(k); } E prefix_sum(int k) { return prefix_prod(k); } E prefix_prod(int k) { chmin(k, n); E ret = G::unit(); for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]); return ret; } E sum(int L, int R) { return prod(L, R); } E prod(int L, int R) { chmax(L, 0), chmin(R, n); if (L == 0) return prefix_prod(R); assert(0 <= L && L <= R && R <= n); E pos = G::unit(), neg = G::unit(); while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; } while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; } return G::op(pos, G::inverse(neg)); } vc get_all() { vc res(n); FOR(i, n) res[i] = prod(i, i + 1); return res; } void add(int k, E x) { multiply(k, x); } void multiply(int k, E x) { static_assert(G::commute); total = G::op(total, x); for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x); } void set(int k, E x) { add(k, G::op(G::inverse(prod(k, k + 1)), x)); } template int max_right(const F check, int L = 0) { assert(check(G::unit())); E s = G::unit(); int i = L; // 2^k 進むとダメ int k = [&]() { while (1) { if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; } if (i == 0) { return topbit(n) + 1; } int k = lowbit(i) - 1; if (i + (1 << k) > n) return k; E t = G::op(s, dat[i + (1 << k) - 1]); if (!check(t)) { return k; } s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i; } }(); while (k) { --k; if (i + (1 << k) - 1 < len(dat)) { E t = G::op(s, dat[i + (1 << k) - 1]); if (check(t)) { i += (1 << k), s = t; } } } return i; } // check(i, x) template int max_right_with_index(const F check, int L = 0) { assert(check(L, G::unit())); E s = G::unit(); int i = L; // 2^k 進むとダメ int k = [&]() { while (1) { if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; } if (i == 0) { return topbit(n) + 1; } int k = lowbit(i) - 1; if (i + (1 << k) > n) return k; E t = G::op(s, dat[i + (1 << k) - 1]); if (!check(i + (1 << k), t)) { return k; } s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i; } }(); while (k) { --k; if (i + (1 << k) - 1 < len(dat)) { E t = G::op(s, dat[i + (1 << k) - 1]); if (check(i + (1 << k), t)) { i += (1 << k), s = t; } } } return i; } template int min_left(const F check, int R) { assert(check(G::unit())); E s = G::unit(); int i = R; // false になるところまで戻る int k = 0; while (i > 0 && check(s)) { s = G::op(s, dat[i - 1]); k = lowbit(i); i -= i & -i; } if (check(s)) { assert(i == 0); return 0; } // 2^k 進むと ok になる // false を維持して進む while (k) { --k; E t = G::op(s, G::inverse(dat[i + (1 << k) - 1])); if (!check(t)) { i += (1 << k), s = t; } } return i + 1; } int kth(E k, int L = 0) { return max_right([&k](E x) -> bool { return x <= k; }, L); } }; // END: ds/fenwicktree/fenwicktree.hpp #line 4 "ds/fenwicktree/fenwicktree_01.hpp" struct FenwickTree_01 { using MX = Monoid_Add; int N, n; vc dat; FenwickTree> bit; FenwickTree_01() {} FenwickTree_01(int n) { build(n); } template FenwickTree_01(int n, F f) { build(n, f); } void build(int m) { N = m; n = ceil(N + 1, 64); dat.assign(n, u64(0)); bit.build(n); } void build(vc dat) { build(len(dat), [&](int i) -> int { return dat[i]; }); } template void build(int m, F f) { N = m; n = ceil(N + 1, 64); dat.assign(n, u64(0)); FOR(i, N) { dat[i / 64] |= u64(f(i)) << (i % 64); } bit.build(n, [&](int i) -> int { return popcnt(dat[i]); }); } int sum_all() { return bit.sum_all(); } int sum(int k) { return prefix_sum(k); } int prefix_sum(int k) { int ans = bit.sum(k / 64); ans += popcnt(dat[k / 64] & ((u64(1) << (k % 64)) - 1)); return ans; } int sum(int L, int R) { if (L == 0) return prefix_sum(R); int ans = 0; ans -= popcnt(dat[L / 64] & ((u64(1) << (L % 64)) - 1)); ans += popcnt(dat[R / 64] & ((u64(1) << (R % 64)) - 1)); ans += bit.sum(L / 64, R / 64); return ans; } int prod(int L, int R) { return sum(L, R); } void add(int k, int x) { if (x == 1) add(k); elif (x == -1) remove(k); else assert(0); } void multiply(int k, int x) { add(k, x); } void add(int k) { dat[k / 64] |= u64(1) << (k % 64); bit.add(k / 64, 1); } void remove(int k) { dat[k / 64] &= ~(u64(1) << (k % 64)); bit.add(k / 64, -1); } int kth(int k, int L = 0) { if (k >= sum_all()) return N; k += popcnt(dat[L / 64] & ((u64(1) << (L % 64)) - 1)); L /= 64; int mid = 0; auto check = [&](auto e) -> bool { if (e <= k) chmax(mid, e); return e <= k; }; int idx = bit.max_right(check, L); if (idx == n) return N; k -= mid; u64 x = dat[idx]; int p = popcnt(x); if (p <= k) return N; k = binary_search([&](int n) -> bool { return (p - popcnt(x >> n)) <= k; }, 0, 64, 0); return 64 * idx + k; } int next(int k) { int idx = k / 64; k %= 64; u64 x = dat[idx] & ~((u64(1) << k) - 1); if (x) return 64 * idx + lowbit(x); idx = bit.kth(0, idx + 1); if (idx == n || !dat[idx]) return N; return 64 * idx + lowbit(dat[idx]); } int prev(int k) { if (k == N) --k; int idx = k / 64; k %= 64; u64 x = dat[idx]; if (k < 63) x &= (u64(1) << (k + 1)) - 1; if (x) return 64 * idx + topbit(x); idx = bit.min_left([&](auto e) -> bool { return e <= 0; }, idx) - 1; if (idx == -1) return -1; return 64 * idx + topbit(dat[idx]); } };// END: ds/fenwicktree/fenwicktree_01.hpp #line 7 "main.cpp" void solve() { LL(N); vi L(N), R(N); FOR(i, N) read(L[i], R[i]); // Wavelet_Matrix_2D_Range>> WM( // N, [&](int i) -> tuple { return {L[i], R[i], 0}; }); Wavelet_Matrix_2D_Range WM( N, [&](int i) -> tuple { return {L[i], R[i], 0}; }); ll ANS = 0; FOR(i, N) { ANS += WM.prod(0, L[i], R[i] + 1, infty); WM.add(i, 1); } print(ANS); } signed main() { solve(); } // END: main.cpp