#include using namespace std; #define overload4(_1, _2, _3, _4, name, ...) name #define rep1(n) for(int i = 0; i < (int)(n); ++i) #define rep2(i, n) for(int i = 0; i < (int)(n); ++i) #define rep3(i, a, b) for(int i = (a); i < (int)(b); ++i) #define rep4(i, a, b, c) for(int i = (a); i < (int)(b); i += (c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep(i,n) for(int i = (int)(n) - 1; i >= 0; --i) #define ALL(a) (a).begin(), (a).end() #define Sort(a) (sort((a).begin(), (a).end())) #define RSort(a) (sort((a).rbegin(), (a).rend())) #define UNIQUE(a) (a.erase(unique((a).begin(), (a).end()), (a).end())) using i64 = int64_t; using i128 = __int128_t; using ll = long long; using ul = unsigned long long; using ull = unsigned long long; using ld = long double; using vi = vector; using vll = vector; using vull = vector; using vc = vector; using vst = vector; using vd = vector; using vld = vector; using P = pair; template long long sum(const T &a){ return accumulate(a.begin(), a.end(), 0LL); } template auto min(const T &a){ return *min_element(a.begin(), a.end()); } template auto max(const T &a){ return *max_element(a.begin(), a.end()); } const long long MINF = 0x7fffffffffff; const long long INF = 0x1fffffffffffffff; const long long MOD = 998244353; const long double EPS = 1e-9; const long double PI = acos(-1); template inline bool chmax(T &a, T b) { if(a < b) { a = b; return 1; } return 0; } template inline bool chmin(T &a, T b) { if(a > b) { a = b; return 1; } return 0; } template istream &operator>>(istream &is, pair &p){ is >> p.first >> p.second; return is; } template ostream &operator<<(ostream &os, const pair &p){ os << "(" << p.first << ", " << p.second << ")"; return os; } template istream &operator>>(istream &is, vector &v){ for(T &in : v) is >> in; return is; } template ostream &operator<<(ostream &os, const vector &v){ for(int i = 0; i < (int) v.size(); ++i){ os << v[i] << (i + 1 != (int) v.size() ? " " : ""); } return os; } template ostream &operator<<(ostream &os, const map &mp){ for(auto &[key, val] : mp){ os << key << ":" << val << " "; } return os; } template ostream &operator<<(ostream &os, const set &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; } template ostream &operator<<(ostream &os, const multiset &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; } template ostream &operator<<(ostream &os, queue q){ while(q.size()){ os << q.front() << " "; q.pop(); } return os; } template ostream &operator<<(ostream &os, deque q){ while(q.size()){ os << q.front() << " "; q.pop_front(); } return os; } template ostream &operator<<(ostream &os, stack st){ while(st.size()){ os << st.top() << " "; st.pop(); } return os; } template ostream &operator<<(ostream &os, priority_queue pq){ while(pq.size()){ os << pq.top() << " "; pq.pop(); } return os; } template void inGraph(vector> &G, U n, U m, bool directed = true, bool zero_index = true){ G.resize(n); for(int i = 0; i < m; i++){ int a, b; cin >> a >> b; if(!zero_index) a--, b--; G[a].push_back(b); if(!directed) G[b].push_back(a); } } template long long binary_search(long long ok, long long ng, T check){ while(abs(ok - ng) > 1){ long long mid = (ok + ng) / 2; if(check(mid)) ok = mid; else ng = mid; } return ok; } template long double binary_search_real(long double ok, long double ng, T check, int iter = 100){ for(int i = 0; i < iter; ++i){ long double mid = (ok + ng) / 2; if(check(mid)) ok = mid; else ng = mid; } return ok; } long long trisum(long long a, long long b){ if(a > b) return 0; long long res = ((b - a + 1) * (a + b)) / 2; return res; } template T intpow(T x, int n){ T ret = 1; while(n > 0) { if(n & 1) (ret *= x); (x *= x); n >>= 1; } return ret; } template T getDivision(T a, T b){ if(b == 0) return -1; if(a >= 0 && b > 0){ return a / b; } else if(a < 0 && b > 0){ return a / b - (a % b != 0); } else if(a >= 0 && b < 0){ return a / b; } else{ return a / b + (a % b != 0); } } template T getReminder(T a, T b){ if(b == 0) return -1; if(a >= 0 && b > 0){ return a % b; } else if(a < 0 && b > 0){ return ((a % b) + b) % b; } else if(a >= 0 && b < 0){ return a % b; } else{ return (abs(b) - abs(a % b)) % b; } } template inline T vin(T &vec, U n) { vec.resize(n); for(int i = 0; i < (int) n; ++i) cin >> vec[i]; return vec; } template inline void vout(T vec, string s = "\n"){ for(auto x : vec) cout << x << s; } template void in(T&... a){ (cin >> ... >> a); } void out(){ cout << '\n'; } template void out(const T &a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; } void fout(){ cout << endl; } template void fout(const T &a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << endl; } void debug(){ cerr << '\n'; } template void debug(const T &a, const Ts&... b){ cerr << a; (cerr << ... << (cerr << ' ', b)); cerr << '\n'; } namespace modcalc{ using i64 = long long; i64 modpow(i64 x, i64 n, const i64 &m){ i64 ret = 1 % m; x %= m; while(n > 0){ if(n & 1) (ret *= x) %= m; (x *= x) %= m; n >>= 1; } return ret; } i64 modinv(i64 a, const i64 m){ i64 b = m, u = 1, v = 0; while(b){ i64 t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } u %= m; if(u < 0) u += m; return u; } i64 modarithmeticsum(i64 a, i64 d, i64 n, const i64 m){ i64 m2 = m * 2; a %= m2, n %= m2, d %= m2; i64 b = (n + m2 - 1) * d % m2; return ((n * (a * 2 + b) % m2) / 2) % m; } i64 modgeometricsum(i64 a, i64 r, i64 n, const i64 m){ a %= m; if(r == 1){ n %= m; return a * n % m; } return a * (modpow(r, n, m) + m - 1) % m * modinv(r - 1, m) % m; } i64 modgeometricsum2(i64 a, i64 r, i64 n, const i64 m){ a %= m; if(r == 1){ n %= m; return a * n % m; } i64 ret = 0; i64 x = 1 % m; i64 sum = 0; for(int i = 0; n > 0; ++i){ if(n & 1){ (ret += x * modpow(r, sum, m) % m) %= m; sum |= 1LL << i; } (x += x * modpow(r, 1LL << i, m) % m) %= m; n >>= 1; } return a * ret % m; } // https://37zigen.com/tonelli-shanks-algorithm/ i64 modsqrt(i64 a, const i64 p){ a %= p; if(a <= 1) return a; // オイラーの規準 if(modpow(a, (p - 1) / 2, p) != 1) return -1; i64 b = 1; while(modpow(b, (p - 1) / 2, p) == 1) b++; // p - 1 = m 2^e i64 m = p - 1, e = 0; while(m % 2 == 0) m >>= 1, e++; // x = a^((m + 1) / 2) (mod p) i64 x = modpow(a, (m - 1) / 2, p); // y = a^{-1} x^2 (mod p) i64 y = a * x % p * x % p; (x *= a) %= p; i64 z = modpow(b, m, p); while(y != 1){ i64 j = 0, t = y; while(t != 1){ (t *= t) %= p; j++; } // e - j ビット目が 1 z = modpow(z, 1LL << (e - j - 1), p); (x *= z) %= p; (z *= z) %= p; (y *= z) %= p; e = j; } return x; } } ll T; void input(){ in(T); } void solve(){ ll n, m; in(n, m); vst k(m); in(k); const ll mod = 998; vll cnt(mod, -1), cost(mod); ll f = -1, looplen = -1, loopcost = -1, s = -1; ll cur = 1; cnt[1] = 0, cost[1] = 1; rep(i, mod){ // out(i, cur); ll nxt = cur * n % mod; if(cnt[nxt] != -1){ f = cnt[nxt]; s = nxt; looplen = cnt[cur] - cnt[nxt] + 1; loopcost = (cost[cur] - cost[nxt] + nxt) % mod; break; } cnt[nxt] = cnt[cur] + 1; cost[nxt] = (cost[cur] + nxt) % mod; cur = nxt; } rep(i, m){ if(k[i].size() < 10){ out(modcalc::modgeometricsum2(1LL, n, stoll(k[i]) + 1, 998)); }else{ // out(s, f, looplen, loopcost); ll c = 0; for(auto x : k[i]){ c *= 10; c += (x - '0'); c %= mod * looplen; } c += 1; c -= f; c %= mod * looplen; if(c < 0) c += mod * looplen; ll ans = cost[s] - s; ans += (c / looplen) * loopcost; ll r = c % looplen; ll cur2 = s; rep(j, r){ ans += cur2; cur2 = (cur2 * n) % mod; } out(ans % mod); } } } int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(20); T = 1; input(); while(T--) solve(); }