import sys # sys.setrecursionlimit(200005) # sys.set_int_max_str_digits(200005) int1 = lambda x: int(x)-1 pDB = lambda *x: print(*x, end="\n", file=sys.stderr) p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr) def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] # inf = -1-(-1 << 31) inf = -1-(-1 << 62) # md = 10**9+7 # md = 998244353 md = 499 def naive(n,m,aa): k=0 for a in aa:k=k*10+a ans=1 for i in range(1,k+1): ans+=pow(n,i,md*2) ans%=md*2 return ans def solve(): n, m = LI() inv = pow(n-1, md-2, md) for _ in range(m): aa = [int(c) for c in SI()] # print(naive(n,m,aa)) if n==0 or (len(aa) == 1 and aa[0] == 0): print(1) continue if n==1: ans=0 for a in aa: ans=(ans*10+a)%998 print((ans+1)%998) else: k = 0 for a in aa: k = (k*10+a)%(md-1) k = (k+1)%(md-1) ans = (pow(n, k, md)-1)*inv%md m2 = 0 if aa[-1] & 1 and n & 1 else 1 while ans%2 != m2: ans = (ans+md)%998 print(ans) for _ in range(II()): solve()