# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, TypeVar T = TypeVar('T') class SortedSet(Generic[T]): BUCKET_RATIO = 16 SPLIT_RATIO = 24 def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) n = len(a) if any(a[i] > a[i + 1] for i in range(n - 1)): a.sort() if any(a[i] >= a[i + 1] for i in range(n - 1)): a, b = [], a for x in b: if not a or a[-1] != x: a.append(x) n = self.size = len(a) num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO))) self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)] def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _position(self, x: T) -> tuple[list[T], int, int]: "return the bucket, index of the bucket and position in which x should be. self must not be empty." for i, a in enumerate(self.a): if x <= a[-1]: break return (a, i, bisect_left(a, x)) def __contains__(self, x: T) -> bool: if self.size == 0: return False a, _, i = self._position(x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a, b, i = self._position(x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.SPLIT_RATIO: mid = len(a) >> 1 self.a[b:b+1] = [a[:mid], a[mid:]] return True def _pop(self, a: list[T], b: int, i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: del self.a[b] return ans def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a, b, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, b, i) return True def lt(self, x: T) -> T | None: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> T | None: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> T | None: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> T | None: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: "Pop and return the i-th element." if i < 0: for b, a in enumerate(reversed(self.a)): i += len(a) if i >= 0: return self._pop(a, ~b, i) else: for b, a in enumerate(self.a): if i < len(a): return self._pop(a, b, i) i -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans # Pythonの再帰深度を増やす sys.setrecursionlimit(200010) def main(): # C++の高速化IOに相当 try: # Nの読み込み n_line = sys.stdin.readline() if not n_line: return n = int(n_line) # wの読み込み w = list(map(int, sys.stdin.readline().split())) # グラフの構築 (隣接リスト) graph = [[] for _ in range(n)] for _ in range(n - 1): line = sys.stdin.readline().split() a, b = int(line[0]) - 1, int(line[1]) - 1 graph[a].append(b) graph[b].append(a) except (IOError, ValueError, EOFError): return # sum_subtree[i]: 頂点iを根とする部分木の重みの合計 sum_subtree = list(w) # === dfs1: 各部分木の重みの合計を計算 === def dfs1(i, p): for c in graph[i]: if c == p: continue sum_subtree[i] += dfs1(c, i) return sum_subtree[i] dfs1(0, -1) total = sum_subtree[0] # 答えを保持する (C++の参照渡しを模倣) ans = [float('inf')] # === update関数 (C++のラムダ式update) === def update(s1, s2): s3 = total - s1 - s2 mn = min(s1, s2, s3) mx = max(s1, s2, s3) ans[0] = min(ans[0], mx - mn) # === dfs2: Small-to-Large (Sack) テクニック === # C++の std::set* の代わりに、SortedSet オブジェクトを返す def dfs2(i, p): # 2. C++の `new set()` -> `SortedSet()` # これで O(log N) の操作が可能になる sums = SortedSet() current = sum_subtree[i] remain = total - current for c in graph[i]: if c == p: continue res = dfs2(c, i) # res も SortedSet # --- 1. ネストしたカットの処理 --- # 3. C++の `res->lower_bound()` -> `res.bisect_left()` # O(log |res|) で動作 idx = res.bisect_left(current / 2) if idx < len(res): # 4. C++の `*itr` -> `res[idx]` (SortedSetはO(log N)で添字アクセス可能) update(remain, res[idx]) if idx > 0: update(remain, res[idx - 1]) # --- 2. Small-to-Large マージの準備 --- if len(sums) < len(res): sums, res = res, sums # 参照の交換 (O(1)) # --- 3. 独立したカットの処理 --- for e in res: # O(|res|) # 5. `sums.bisect_left()` で O(log |sums|) の検索 idx_s = sums.bisect_left((total - e) / 2) if idx_s < len(sums): update(e, sums[idx_s]) # O(log |sums|) if idx_s > 0: update(e, sums[idx_s - 1]) # O(log |sums|) # --- 4. マージ --- # 6. C++の `sums->insert(all(*res))` # O(|res| * log |sums|) # Pythonの SortedSet.update() も同様の計算量 sums.update(res) # 7. C++の `sums->insert(current)` -> `sums.add(current)` # O(log |sums|) で挿入 sums.add(current) return sums # 根を0としてdfs2を実行 dfs2(0, -1) # 最終的な答えの出力 print(ans[0]) if __name__ == "__main__": main()