# input import sys input = sys.stdin.readline II = lambda : int(input()) MI = lambda : map(int, input().split()) LI = lambda : [int(a) for a in input().split()] SI = lambda : input().rstrip() LLI = lambda n : [[int(a) for a in input().split()] for _ in range(n)] LSI = lambda n : [input().rstrip() for _ in range(n)] MI_1 = lambda : map(lambda x:int(x)-1, input().split()) LI_1 = lambda : [int(a)-1 for a in input().split()] mod = 998244353 inf = 1001001001001001001 ordalp = lambda s : ord(s)-65 if s.isupper() else ord(s)-97 ordallalp = lambda s : ord(s)-39 if s.isupper() else ord(s)-97 yes = lambda : print("Yes") no = lambda : print("No") yn = lambda flag : print("Yes" if flag else "No") prinf = lambda ans : print(ans if ans < 1000001001001001001 else -1) alplow = "abcdefghijklmnopqrstuvwxyz" alpup = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" alpall = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" URDL = {'U':(-1,0), 'R':(0,1), 'D':(1,0), 'L':(0,-1)} DIR_4 = [[-1,0],[0,1],[1,0],[0,-1]] DIR_8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]] DIR_BISHOP = [[-1,1],[1,1],[1,-1],[-1,-1]] prime60 = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59] sys.set_int_max_str_digits(0) # sys.setrecursionlimit(10**6) # import pypyjit # pypyjit.set_param('max_unroll_recursion=-1') from collections import defaultdict,deque from heapq import heappop,heappush from bisect import bisect_left,bisect_right DD = defaultdict BSL = bisect_left BSR = bisect_right def c(x): s = str(x) for i in s: if i in "018": pass else: return False return True from itertools import product ok = [] for p in product("018", repeat = 8): s = "".join(p) ok.append(int(s)) sok = set(ok) two = dict() for x in ok: for y in ok: two[x+y] = (x, y) def solve(s): if s in sok: print(1) print(s) return if s in two: print(2) p, q = two[s] print(p) print(q) return for x in two: if s - x in sok: print(3) p, q = two[x] print(p) print(q) print(s - x) return for x in two: if s - x in two: print(4) p, q = two[x] print(p) print(q) p, q = two[s - x] print(p) print(q) return assert False t = II() for i in range(t): n = II() s = 81181819 - n solve(s) ## たかだか 10 個 ## ありうるのは 3 ^ 8 個