# input import sys input = sys.stdin.readline II = lambda : int(input()) MI = lambda : map(int, input().split()) LI = lambda : [int(a) for a in input().split()] SI = lambda : input().rstrip() LLI = lambda n : [[int(a) for a in input().split()] for _ in range(n)] LSI = lambda n : [input().rstrip() for _ in range(n)] MI_1 = lambda : map(lambda x:int(x)-1, input().split()) LI_1 = lambda : [int(a)-1 for a in input().split()] mod = 998244353 inf = 1001001001001001001 ordalp = lambda s : ord(s)-65 if s.isupper() else ord(s)-97 ordallalp = lambda s : ord(s)-39 if s.isupper() else ord(s)-97 yes = lambda : print("Yes") no = lambda : print("No") yn = lambda flag : print("Yes" if flag else "No") prinf = lambda ans : print(ans if ans < 1000001001001001001 else -1) alplow = "abcdefghijklmnopqrstuvwxyz" alpup = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" alpall = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" URDL = {'U':(-1,0), 'R':(0,1), 'D':(1,0), 'L':(0,-1)} DIR_4 = [[-1,0],[0,1],[1,0],[0,-1]] DIR_8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]] DIR_BISHOP = [[-1,1],[1,1],[1,-1],[-1,-1]] prime60 = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59] sys.set_int_max_str_digits(0) # sys.setrecursionlimit(10**6) # import pypyjit # pypyjit.set_param('max_unroll_recursion=-1') from collections import defaultdict,deque from heapq import heappop,heappush from bisect import bisect_left,bisect_right DD = defaultdict BSL = bisect_left BSR = bisect_right from itertools import product def calc(x, n): dig = [None] * 100 for t in product([0, 1, 8], repeat=x): dig[sum(t)] = t def dfs(d, n): if d == -1: if n == 0: return [0] * x else: return None p, q = divmod(n, 10 ** d) for r in range(p - x, p + 1): if r < 0: continue if dig[r] == None: continue nn = q + (p - r) * 10 ** d res = dfs(d-1, nn) if res != None: res = [res[i] + dig[r][i] * 10 ** d for i in range(x)] return res return None r = dfs(9, n) return r def solve(n): for x in range(1, 8): r = calc(x, n) if r != None: print(x) for p in r: print(p) return t = II() for i in range(t): n = 81181819 - II() solve(n)