#include using namespace std; using i128 = __int128_t; static i128 INF128 = ( (i128)1 << 80 ); struct Node { bool empty; i128 sum; array t1; array t2; Node(): empty(true), sum(0) { t1.fill(0); t2.fill(0); } }; inline Node make_leaf(i128 C, int idx) { Node nd; nd.empty = false; nd.sum = C; // t1 and t2 both set to (C,C,C,i+1,i,i+1,i) nd.t1 = {C, C, C, (i128)(idx+1), (i128)idx, (i128)(idx+1), (i128)idx}; nd.t2 = nd.t1; return nd; } // combine function (op) Node combine(const Node &A, const Node &B) { if (A.empty) return B; if (B.empty) return A; Node C; C.empty = false; i128 sa = A.sum; i128 sb = B.sum; C.sum = sa + sb; // compute first tuple (based on Python op's first block) { // unpack i128 m0=A.t1[0], m1=A.t1[1], m2=A.t1[2], r0=A.t1[3], l1=A.t1[4], r1=A.t1[5], l2=A.t1[6]; i128 m0_=B.t1[0], m1_=B.t1[1], m2_=B.t1[2], r0_=B.t1[3], l1_=B.t1[4], r1_=B.t1[5], l2_=B.t1[6]; i128 tm0, tm1, tm2, tr0, tl1, tr1, tl2; // tm0 if (m0 >= sa + m0_) { tm0 = m0; tr0 = r0; } else { tm0 = sa + m0_; tr0 = r0_; } // tm2 if (m2_ >= sb + m2) { tm2 = m2_; tl2 = l2_; } else { tm2 = sb + m2; tl2 = l2; } // tm1 if (m1 >= m1_ && m1 >= m2 + m0_) { tm1 = m1; tl1 = l1; tr1 = r1; } else if (m1_ >= m1 && m1_ >= m2 + m0_) { tm1 = m1_; tl1 = l1_; tr1 = r1_; } else { tm1 = m2 + m0_; tl1 = l2; tr1 = r0_; } C.t1 = {tm0, tm1, tm2, tr0, tl1, tr1, tl2}; } // compute second tuple (based on Python op's second block: using A[2], B[2]) { i128 m0=A.t2[0], m1=A.t2[1], m2=A.t2[2], r0=A.t2[3], l1=A.t2[4], r1=A.t2[5], l2=A.t2[6]; i128 m0_=B.t2[0], m1_=B.t2[1], m2_=B.t2[2], r0_=B.t2[3], l1_=B.t2[4], r1_=B.t2[5], l2_=B.t2[6]; i128 tm0, tm1, tm2, tr0, tl1, tr1, tl2; if (m0 <= sa + m0_) { tm0 = m0; tr0 = r0; } else { tm0 = sa + m0_; tr0 = r0_; } if (m2_ <= sb + m2) { tm2 = m2_; tl2 = l2_; } else { tm2 = sb + m2; tl2 = l2; } if (m1 <= m1_ && m1 <= m2 + m0_) { tm1 = m1; tl1 = l1; tr1 = r1; } else if (m1_ <= m1 && m1_ <= m2 + m0_) { tm1 = m1_; tl1 = l1_; tr1 = r1_; } else { tm1 = m2 + m0_; tl1 = l2; tr1 = r0_; } C.t2 = {tm0, tm1, tm2, tr0, tl1, tr1, tl2}; } return C; } // mapping function: apply lazy f (0 or 1) to a node inline Node apply_map(int f, const Node &nd) { if (nd.empty) return nd; if (f == 0) return nd; Node c; c.empty = false; c.sum = - nd.sum; // c.t1 from nd.t2 with first three negated, last four same c.t1 = nd.t2; c.t1[0] = -c.t1[0]; c.t1[1] = -c.t1[1]; c.t1[2] = -c.t1[2]; // c.t2 from nd.t1 c.t2 = nd.t1; c.t2[0] = -c.t2[0]; c.t2[1] = -c.t2[1]; c.t2[2] = -c.t2[2]; return c; } struct LazySegTree { int n; int logn; int size; vector d; vector lz; // lazy values (0 or 1), composition is xor LazySegTree() = default; LazySegTree(const vector &v) { n = (int)v.size(); logn = 0; while ((1<= 1; --i) { d[i] = combine(d[2*i], d[2*i+1]); } } void _all_apply(int k, int f) { d[k] = apply_map(f, d[k]); if (k < size) { lz[k] ^= f; // composition is xor } } void _push(int k) { if (lz[k] != 0) { _all_apply(2*k, lz[k]); _all_apply(2*k+1, lz[k]); lz[k] = 0; } } void _update(int k) { d[k] = combine(d[2*k], d[2*k+1]); } Node all_prod() { return d[1]; } // apply f to [l, r) (0-indexed) void apply_range(int l, int r, int f) { if (l >= r) return; l += size; r += size; // push down for (int i = logn; i >= 1; --i) { if (((l >> i) << i) != l) _push(l >> i); if (((r >> i) << i) != r) _push((r-1) >> i); } int L = l, R = r; while (l < r) { if (l & 1) { _all_apply(l, f); l++; } if (r & 1) { --r; _all_apply(r, f); } l >>= 1; r >>= 1; } // update up for (int i = 1; i <= logn; ++i) { if (((L >> i) << i) != L) _update(L >> i); if (((R >> i) << i) != R) _update((R-1) >> i); } } }; string to_string_i128(i128 x) { if (x == 0) return "0"; bool neg = false; if (x < 0) { neg = true; x = -x; } string s; while (x > 0) { int digit = (int)(x % 10); s.push_back('0' + digit); x /= 10; } if (neg) s.push_back('-'); reverse(s.begin(), s.end()); return s; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int T; if (!(cin >> T)) return 0; while (T--) { int n_in, k; cin >> n_in >> k; vector A(n_in); vector B(n_in); for (int i = 0; i < n_in; ++i) { long long t; cin >> t; A[i] = (i128)t; } for (int i = 0; i < n_in; ++i) { long long t; cin >> t; B[i] = (i128)t; } bool odd = (k % 2 != 0); int n = n_in; if (odd) { // extend A.push_back((i128)0); B.push_back(INF128); n = n_in + 1; k = k + 1; } // compute ans = sum(A) i128 ans = 0; for (int i = 0; i < n; ++i) ans += A[i]; // C = B - A vector C(n); for (int i = 0; i < n; ++i) C[i] = B[i] - A[i]; // build lst vector lst; lst.reserve(n); for (int i = 0; i < n; ++i) { lst.push_back(make_leaf(C[i], i)); } LazySegTree st(lst); int loops = k / 2; for (int it = 0; it < loops; ++it) { Node rep = st.all_prod(); if (rep.empty) break; // extract l = rep.t1[4], r = rep.t1[5] i128 m1 = rep.t1[1]; if (m1 < 0) break; i128 l128 = rep.t1[4]; i128 r128 = rep.t1[5]; // these were stored as small ints; cast to int int l = (int)l128; int r = (int)r128; ans += m1; // apply [l, r) with f = 1 if (l < r) st.apply_range(l, r, 1); } if (odd) { // result = main(...) - (1<<80) ans -= INF128; } cout << to_string_i128(ans) << '\n'; } return 0; }