#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using lint = long long; using pint = pair; using plint = pair; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } const std::vector> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); } template std::pair operator+(const std::pair &l, const std::pair &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template std::pair operator-(const std::pair &l, const std::pair &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template std::vector sort_unique(std::vector vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template int arglb(const std::vector &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template int argub(const std::vector &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template IStream &operator>>(IStream &is, std::vector &vec) { for (auto &v : vec) is >> v; return is; } template OStream &operator<<(OStream &os, const std::vector &vec); template OStream &operator<<(OStream &os, const std::array &arr); template OStream &operator<<(OStream &os, const std::unordered_set &vec); template OStream &operator<<(OStream &os, const pair &pa); template OStream &operator<<(OStream &os, const std::deque &vec); template OStream &operator<<(OStream &os, const std::set &vec); template OStream &operator<<(OStream &os, const std::multiset &vec); template OStream &operator<<(OStream &os, const std::unordered_multiset &vec); template OStream &operator<<(OStream &os, const std::pair &pa); template OStream &operator<<(OStream &os, const std::map &mp); template OStream &operator<<(OStream &os, const std::unordered_map &mp); template OStream &operator<<(OStream &os, const std::tuple &tpl); template OStream &operator<<(OStream &os, const std::vector &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template OStream &operator<<(OStream &os, const std::array &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } template std::istream &operator>>(std::istream &is, std::tuple &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template OStream &operator<<(OStream &os, const std::tuple &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } template OStream &operator<<(OStream &os, const std::unordered_set &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::deque &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template OStream &operator<<(OStream &os, const std::set &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::multiset &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::unordered_multiset &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::pair &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template OStream &operator<<(OStream &os, const std::map &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::unordered_map &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif #include #include #include // Enumerate nodes of nonrecursive segtree which cover [l, r) std::vector segtree_range_covering_nodes(int N, int l, int r) { std::vector ret, ret_rev; l += N, r += N; while (l < r) { if (l & 1) ret.push_back(l++); if (r & 1) ret_rev.push_back(--r); l >>= 1, r >>= 1; } std::reverse(ret_rev.begin(), ret_rev.end()); ret.insert(ret.end(), ret_rev.begin(), ret_rev.end()); return ret; } constexpr lint inf = 1000000000000000001; // 0-indexed BIT (binary indexed tree / Fenwick tree) (i : [0, len)) template struct BIT { int n; std::vector data; BIT(int len = 0) : n(len), data(len) {} void reset() { std::fill(data.begin(), data.end(), T(0)); } void add(int pos, T v) { // a[pos] += v pos++; while (pos > 0 and pos <= n) data[pos - 1] += v, pos += pos & -pos; } T sum(int k) const { // a[0] + ... + a[k - 1] T res = 0; while (k > 0) res += data[k - 1], k -= k & -k; return res; } T sum(int l, int r) const { return sum(r) - sum(l); } // a[l] + ... + a[r - 1] template friend OStream &operator<<(OStream &os, const BIT &bit) { T prv = 0; os << '['; for (int i = 1; i <= bit.n; i++) { T now = bit.sum(i); os << now - prv << ',', prv = now; } return os << ']'; } }; #include #include #include // Sorted set of integers [0, n) // Space complexity: (64 / 63) n + O(log n) bit class fast_set { static constexpr int B = 64; int n; int cnt; std::vector> _d; static int bsf(uint64_t x) { return __builtin_ctzll(x); } static int bsr(uint64_t x) { return 63 - __builtin_clzll(x); } public: // 0 以上 n_ 未満の整数が入れられる sorted set を作成 fast_set(int n_) : n(n_), cnt(0) { do { n_ = (n_ + B - 1) / B, _d.push_back(std::vector(n_)); } while (n_ > 1); } bool contains(int i) const { assert(0 <= i and i < n); return (_d.front().at(i / B) >> (i % B)) & 1; } void insert(int i) { assert(0 <= i and i < n); if (contains(i)) return; ++cnt; for (auto &vec : _d) { bool f = vec.at(i / B); vec.at(i / B) |= 1ULL << (i % B), i /= B; if (f) break; } } void erase(int i) { assert(0 <= i and i < n); if (!contains(i)) return; --cnt; for (auto &vec : _d) { vec.at(i / B) &= ~(1ULL << (i % B)), i /= B; if (vec.at(i)) break; } } // i 以上の最小要素 なければ default_val int next(int i, const int default_val) const { assert(0 <= i and i <= n); for (auto itr = _d.cbegin(); itr != _d.cend(); ++itr, i = i / B + 1) { if (i / B >= int(itr->size())) break; if (auto d = itr->at(i / B) >> (i % B); d) { i += bsf(d); while (itr != _d.cbegin()) i = i * B + bsf((--itr)->at(i)); return i; } } return default_val; } int next(const int i) const { return next(i, n); } // i 以下の最小要素 なければ default_val int prev(int i, int default_val = -1) const { assert(-1 <= i and i < n); for (auto itr = _d.cbegin(); itr != _d.cend() and i >= 0; ++itr, i = i / B - 1) { if (auto d = itr->at(i / B) << (B - 1 - i % B); d) { i += bsr(d) - (B - 1); while (itr != _d.cbegin()) i = i * B + bsr((--itr)->at(i)); return i; } } return default_val; } // return minimum element (if exists) or `n` (empty) int min() const { return next(0); } // return maximum element (if exists) or `-1` (empty) int max() const { return prev(n - 1); } int size() const { return cnt; } bool empty() const { return cnt == 0; } void clear() { if (!cnt) return; cnt = 0; auto rec = [&](auto &&self, int d, int x) -> void { if (d) { for (auto m = _d.at(d).at(x); m;) { int i = bsf(m); m -= 1ULL << i, self(self, d - 1, x * B + i); } } _d.at(d).at(x) = 0; }; rec(rec, _d.size() - 1, 0); } }; #include using Se = pair; Se op(Se l, Se r) { return {min(l.first + r.first, inf), l.second + r.second}; } Se e() { return {0, 0}; } using F = lint; Se mapping(F f, Se x) { return {min(x.first + x.second * f, inf), x.second}; } F composition(F f, F g) { return min(f + g, inf); } F id() { return 0; } #include #include #include #include #include #include template class wavelet_matrix { class bit_vector { static constexpr int WSIZE = 64; int n = 0; int cnt0 = 0; std::vector bits; std::vector count_cumsum; // need build() public: bit_vector(int n_) : n(n_), cnt0(n_) { assert(n >= 0); bits.assign((n + WSIZE - 1) / WSIZE, 0); } int size() const { return n; } void set(int i) { assert(0 <= i and i < n); bits[i / WSIZE] |= (1ULL << (i % WSIZE)); } void reset(int i) { assert(0 <= i and i < n); bits[i / WSIZE] &= ~(1ULL << (i % WSIZE)); } void build() { cnt0 = n; for (int i = 0; i < (int)bits.size(); ++i) cnt0 -= std::popcount(bits[i]); count_cumsum.assign(bits.size(), 0); for (int i = 1; i < (int)bits.size(); ++i) { count_cumsum[i] = count_cumsum[i - 1] + std::popcount(bits[i - 1]); } } int count0() const { return cnt0; } int count1() const { return n - cnt0; } // get i-th bit bool access(int i) const { assert(0 <= i and i < n); return bits[i / WSIZE] & (1ULL << (i % WSIZE)); } // count of 0s in [0, i) int rank0(int i) const { assert(0 <= i and i <= n); return i - rank1(i); } // count of 1s in [0, i) int rank1(int i) const { assert(0 <= i and i <= n); if (i == n) return count1(); return count_cumsum[i / WSIZE] + std::popcount(bits[i / WSIZE] & ((1ULL << (i % WSIZE)) - 1)); } // get the position of i-th element after stable sort int sorted_pos(int i) const { return access(i) ? (rank1(i) + count0()) : rank0(i); } template friend OStream &operator<<(OStream &os, const bit_vector &bv) { os << "bit_vector[" << bv.n << "]: "; for (int i = 0; i < bv.n; ++i) { os << (bv.bits[i / WSIZE] & (1ULL << (i % WSIZE)) ? '1' : '0'); } os << " (cnt0: " << bv.cnt0 << ")"; return os; } }; std::vector bits; std::vector> points; std::vector distinct_ys; int to_index_x(Int x) const { return std::lower_bound(points.cbegin(), points.cend(), std::make_pair(x, Int{}), [](const auto &l, const auto &r) { return l.first < r.first; }) - points.cbegin(); } int to_index_y(Int y) const { return std::lower_bound(distinct_ys.cbegin(), distinct_ys.cend(), y) - distinct_ys.cbegin(); } bool is_built() const { return !bits.empty(); } public: wavelet_matrix() = default; wavelet_matrix(const std::vector &ys) { for (int x = 0; x < (int)ys.size(); ++x) { assert(ys[x] >= 0); add_point(x, ys[x]); } build(); } void add_point(Int x, Int y) { assert(bits.empty()); // confirm that build() is not called yet points.emplace_back(x, y); distinct_ys.emplace_back(y); } void build() { std::sort(points.begin(), points.end()); points.erase(std::unique(points.begin(), points.end()), points.end()); std::sort(distinct_ys.begin(), distinct_ys.end()); distinct_ys.erase(std::unique(distinct_ys.begin(), distinct_ys.end()), distinct_ys.end()); int d = 1; while ((1 << d) < (int)distinct_ys.size()) ++d; bits.assign(d, bit_vector(N())); std::vector a; for (auto p : points) a.push_back(to_index_y(p.second)); auto nxt = a; for (int d = D() - 1; d >= 0; --d) { for (int i = 0; i < N(); ++i) { if ((a[i] >> d) & 1) bits[d].set(i); } bits[d].build(); for (int i = 0; i < N(); ++i) nxt[bits[d].sorted_pos(i)] = a[i]; std::swap(a, nxt); } } int N() const { return points.size(); } int D() const { return bits.size(); } // get v_i int index_access(int i) const { assert(0 <= i and i < N()); assert(is_built()); int ret = 0; for (int d = D() - 1; d >= 0; --d) { ret |= (int)bits[d].access(i) << d; i = bits[d].sorted_pos(i); } return ret; } Int access(int i) const { assert(0 <= i and i < N()); assert(is_built()); return distinct_ys.at(index_access(i)); } // callback(d, i) means "update d-th segment's i-th element" void index_apply(int i, auto callback) const { assert(0 <= i and i < N()); assert(is_built()); for (int d = D() - 1; d >= 0; --d) { i = bits[d].sorted_pos(i); callback(d, i); } } // Update weight associated to point (x, y) // callback(d, i) means "update d-th segment's i-th element" void apply(Int x, Int y, auto callback) const { const int i = std::lower_bound(points.cbegin(), points.cend(), std::make_pair(x, y)) - points.cbegin(); assert(i < N() and points[i] == std::make_pair(x, y)); index_apply(i, callback); } void index_prod(int l, int r, int yr, auto callback) const { assert(0 <= l and l <= r and r <= N()); assert(0 <= yr and yr <= (int)distinct_ys.size()); assert(is_built()); if (yr & (1 << D())) { const int d = D() - 1; const int l0 = bits[d].rank0(l), r0 = bits[d].rank0(r); callback(d, l0, r0); const int l1 = bits[d].rank1(l) + bits[d].count0(); const int r1 = bits[d].rank1(r) + bits[d].count0(); callback(d, l1, r1); return; } for (int d = D() - 1; d >= 0; --d) { if (l == r) break; const int l0 = bits[d].rank0(l), r0 = bits[d].rank0(r); if ((yr >> d) & 1) { callback(d, l0, r0); // l = bits[d].rank1(l) + bits[d].count0(); l += bits[d].count0() - l0; // r = bits[d].rank1(r) + bits[d].count0(); r += bits[d].count0() - r0; } else { l = l0, r = r0; } } } // Get product of weights associated to elements in [xl, xr) * [-inf, yr) // callback(d, l, r) means "use d-th segment's [l, r) elements" void prod(Int xl, Int xr, Int yr, auto callback) const { index_prod(to_index_x(xl), to_index_x(xr), to_index_y(yr), callback); } // Get k-th smallest v_i, i in [l, r) (0-indexed, duplicates are counted)] int index_kth_smallest(int l, int r, int k) const { assert(0 <= l and l <= r and r <= N()); assert(0 <= k and k < r - l); assert(is_built()); int ret = 0; for (int d = D() - 1; d >= 0; --d) { const int l0 = bits[d].rank0(l), r0 = bits[d].rank0(r); if (k < r0 - l0) { l = l0, r = r0; } else { k -= r0 - l0; ret |= 1 << d; l = bits[d].rank1(l) + bits[d].count0(); r = bits[d].rank1(r) + bits[d].count0(); } } return ret; } // Get k-th largest v_i, i in [l, r) (0-indexed, duplicates are counted) int index_kth_largest(int l, int r, int k) const { assert(0 <= l and l <= r and r <= N()); assert(0 <= k and k < r - l); return index_kth_smallest(l, r, (r - l - 1) - k); } // count i s.t. i in [l, r) and v_i < upper_bound int index_range_freq(int l, int r, int upper_bound) const { assert(0 <= l and l <= r and r <= N()); assert(is_built()); if (upper_bound <= 0) return 0; if (upper_bound >= (int)distinct_ys.size()) return r - l; int ret = 0; for (int d = D() - 1; d >= 0; --d) { const int l0 = bits[d].rank0(l), r0 = bits[d].rank0(r); if ((upper_bound >> d) & 1) { ret += r0 - l0; l = bits[d].rank1(l) + bits[d].count0(); r = bits[d].rank1(r) + bits[d].count0(); } else { l = l0, r = r0; } } return ret; } // Get k-th smallest y in [xl, xr) (0-indexed, duplicates are counted) std::optional kth_smallest(Int xl, Int xr, int k) const { const int l = to_index_x(xl), r = to_index_x(xr); if (k < 0 or k >= r - l) return std::nullopt; return distinct_ys.at(index_kth_smallest(l, r, k)); } // Get k-th largest y in [xl, xr) (0-indexed, duplicates are counted) std::optional kth_largest(Int xl, Int xr, int k) const { const int l = to_index_x(xl), r = to_index_x(xr); if (k < 0 or k >= r - l) return std::nullopt; return distinct_ys.at(index_kth_largest(l, r, k)); } // count points in [xl, xr) * [-inf, yr) int range_freq(Int xl, Int xr, Int yr) const { return index_range_freq(to_index_x(xl), to_index_x(xr), to_index_y(yr)); } // max v_i s.t. i in [l, r), v_i < upper_bound std::optional index_prev_value(int l, int r, int upper_bound) const { assert(0 <= l and l <= r and r <= N()); assert(is_built()); if (upper_bound <= 0) return std::nullopt; const int n = index_range_freq(l, r, upper_bound); return n == 0 ? std::nullopt : index_kth_smallest(l, r, n - 1); } // max y s.t. x in [xl, xr), y < yr std::optional prev_value(Int xl, Int xr, Int yr) const { const int l = to_index_x(xl), r = to_index_x(xr), ub = to_index_y(yr); const auto idx = index_prev_value(l, r, ub); return idx ? distinct_ys.at(*idx) : std::nullopt; } // min v_i s.t. i in [l, r), v_i >= lower_bound std::optional index_next_value(int l, int r, int lower_bound) const { assert(0 <= l and l <= r and r <= N()); assert(is_built()); if (lower_bound >= (int)distinct_ys.size()) return std::nullopt; const int n = index_range_freq(l, r, lower_bound); return n >= (r - l) ? std::nullopt : index_kth_smallest(l, r, n); } // min y s.t. x in [xl, xr), y >= yl std::optional next_value(Int l, Int r, Int yl) const { const int xl = to_index_x(l), xr = to_index_x(r), yl_idx = to_index_y(yl); const auto idx = index_next_value(xl, xr, yl_idx); return idx ? distinct_ys.at(*idx) : std::nullopt; } }; /* Sample usage: wavelet_matrix wm; wm.build(); vector tmp(wm.D(), BIT(wm.N())); wm.apply(i, j, [&](int d, int idx) { tmp[d].add(idx, wx); }); // point add T ret{}; wm.prod(l, r, u, [&](int d, int l0, int r0) { ret += tmp[d].sum(l0, r0); }); // range sum */ int main() { int N, M; cin >> N >> M; int S = 1; while (S < N) S *= 2; vector>> seg_to(S + N); atcoder::scc_graph cycle(S + N); FOR(i, 1, S) { if (i * 2 < S + N) { seg_to.at(i).emplace_back(i * 2, 0); cycle.add_edge(i, i * 2); } if (i * 2 + 1 < S + N) { seg_to.at(i).emplace_back(i * 2 + 1, 0); cycle.add_edge(i, i * 2 + 1); } } vector>> to(N); __int128 ret = 0; REP(e, M) { int x, l, r; lint c; cin >> x >> l >> r >> c; --x; --l; to.at(x).emplace_back(l, r, c); if (l <= x and x < r and c == 0) ret = inf; for (auto v : segtree_range_covering_nodes(S, l, r)) { seg_to.at(S + x).emplace_back(v, c); if (c == 0) cycle.add_edge(S + x, v); } } vector min_dist(S + N, inf); min_dist.at(S) = 0; priority_queue, greater<>> pq; pq.emplace(0, S); using Seg = atcoder::lazy_segtree; vector ord; while (!pq.empty()) { auto [dnow, now] = pq.top(); pq.pop(); if (dnow != min_dist.at(now)) continue; if (now >= S) ord.push_back(now - S); for (auto [nxt, w] : seg_to.at(now)) { if (chmin(min_dist.at(nxt), min_dist.at(now) + w)) pq.emplace(min_dist.at(nxt), nxt); } } assert((int)ord.size() == N); min_dist.erase(min_dist.begin(), min_dist.begin() + S); wavelet_matrix wm(min_dist); const vector init(N, {0, 1}); vector tmp(wm.D(), Seg(init)); wm.prod(0, 1, 1, [&](int d, int l, int r) { tmp[d].apply(l, r, 1); }); Seg seg(init); seg.set(0, {1, 1}); vector all_access(N); vector shortest_access(N); fast_set visited(N); // dbg(cycle.scc()); dbg(cycle.scc().size()); dbg(S + N); if ((int)cycle.scc().size() < S + N) ret = inf; lint last_dist = -1; BIT bibi(N); for (auto i : ord) { if (const lint d = min_dist.at(i); d != last_dist) { for (int i = visited.next(0); i < N; i = visited.next(i)) { visited.erase(i); bibi.add(i, -1); } last_dist = d; } wm.apply(i, min_dist.at(i), [&](int d, int l) { shortest_access[i] += tmp[d].prod(l, l + 1).first; chmin(shortest_access.at(i), inf); }); all_access.at(i) = seg.get(i).first; visited.insert(i); bibi.add(i, 1); for (auto [l, r, weight] : to.at(i)) { if (weight) { ret += bibi.sum(l, r) * __int128(shortest_access.at(i)); chmin<__int128>(ret, inf); } seg.apply(l, r, shortest_access.at(i)); wm.prod(l, r, min_dist.at(i) + weight + 1, [&](int d, int l, int r) { tmp[d].apply(l, r, shortest_access.at(i)); }); } } dbg(shortest_access); dbg(all_access); for (auto x : all_access) { ret += x; chmin<__int128>(ret, inf); } if (ret < inf) { cout << lint(ret) << '\n'; } else { puts("Too Many"); } }