import sympy import random ANS = [] """ E=1 を解く 流石に約数列挙は必要になる E=1 の解法から E=3 の解は作れている E=2 も約数列挙を使う """ N = int(input()) divs = sympy.ntheory.divisors(2 * N) for d in divs: # E = 1 b = d a = (2*N)//b if a <= b and (a + b) % 2 == 1: R = (a+b-1) // 2 L = (b-a+1) // 2 ANS.append((1, L, R)) N6 = N * 6 # E=2 # 項数が 6N の約数 for d in range(1, 150_000_000): if d*(d-1)*(2*d-1) > N6: break if (N6 % d != 0): continue a = 6 b = 6 * d + 6 c = 2 * d * d + 3 * d + 1 - (N6 // d) D = b * b - 4 * a * c if D < 0: continue # 精度心配だったっけ sq = int(D ** .5) if sq * sq != D: continue if (sq-b) % 12 != 0: continue x = (-b+sq)//12 L = x+1 R = x+d ANS.append((2, L, R)) # print(a, b, c, sq) def f(S): # n(n+1)/2==S X = 8 * S + 1 x = int(X**.5) if x*x != X: return -1 # 2n+1==x return (x-1)//2 # E=3 for d in divs: if d % 2 != 0: continue d //= 2 # div of N a = d b = N//d if a > b or (a+b) % 2 != 0: continue SR = (a+b)//2 SL = (b-a)//2 R = f(SR) L = f(SL) if L != -1 and R != -1: ANS.append((3, L+1, R)) # E は 4 以上です for E in range(4, 80): S = 0 R = 0 for L in range(1, 10_000_000): while 1: x = R**E if S + x > N: break R += 1 S += x if L == R: break if S == N: ANS.append((E, L, R - 1)) S -= L**E ANS.sort() print(len(ANS)) for a, b, c in ANS: print(a, b, c)