""" sample で WA が出ているが手元で再現してない yandexcup があるのでここで終わりで """ def gcd(a, b): while a: a, b = b % a, a return b def is_prime(n): if n == 2: return 1 if n == 1 or n % 2 == 0: return 0 m = n - 1 lsb = m & -m s = lsb.bit_length()-1 d = m // lsb test_numbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53] for a in test_numbers: if a == n: continue x = pow(a, d, n) r = 0 if x == 1: continue while x != m: x = pow(x, 2, n) r += 1 if x == 1 or r == s: return 0 return 1 def find_prime_factor(n): if n % 2 == 0: return 2 m = int(n**0.125)+1 for c in range(1, n): def f(a): return (pow(a, 2, n)+c) % n y = 0 g = q = r = 1 k = 0 while g == 1: x = y while k < 3*r//4: y = f(y) k += 1 while k < r and g == 1: ys = y for _ in range(min(m, r-k)): y = f(y) q = q*abs(x-y) % n g = gcd(q, n) k += m k = r r *= 2 if g == n: g = 1 y = ys while g == 1: y = f(y) g = gcd(abs(x-y), n) if g == n: continue if is_prime(g): return g elif is_prime(n//g): return n//g else: return find_prime_factor(g) def factorize(n): res = {} while not is_prime(n) and n > 1: # nが合成数である間nの素因数の探索を繰り返す p = find_prime_factor(n) s = 0 while n % p == 0: # nが素因数pで割れる間割り続け、出力に追加 n //= p s += 1 res[p] = s if n > 1: # n>1であればnは素数なので出力に追加 res[n] = 1 return res ANS = [] """ E=1 を解く 流石に約数列挙は必要になる E=1 の解法から E=3 の解は作れている E=2 も約数列挙を使う """ N = int(input()) # divs = sympy.ntheory.divisors(2 * N) pfs = factorize(N) if 2 not in pfs: pfs[2] = 0 if 3 not in pfs: pfs[3] = 0 def get_divs(pfs): n = 1 for p, e in pfs.items(): n *= e + 1 divs = [1] * n n = 1 for p, e in pfs.items(): add = n * e for i in range(add): divs[n+i] = divs[i]*p n += add return divs pfs[2] += 1 for d in get_divs(pfs): # E = 1 b = d a = (2*N)//b if a <= b and (a + b) % 2 == 1: R = (a+b-1) // 2 L = (b-a+1) // 2 ANS.append((1, L, R)) pfs[2] -= 1 # E=2 # 項数が 6N の約数 pfs[2] += 1 pfs[3] += 1 N6 = N * 6 for d in get_divs(pfs): a = 6 b = 6 * d + 6 c = 2 * d * d + 3 * d + 1 - (N6 // d) D = b * b - 4 * a * c if D < 0: continue # 精度心配だったっけ sq = int(D ** .5) if sq * sq != D: continue if (sq-b) % 12 != 0: continue x = (-b+sq)//12 if 0 <= x: L = x+1 R = x+d ANS.append((2, L, R)) # print(a, b, c, sq) pfs[2] -= 1 pfs[3] -= 1 def f(S): # n(n+1)/2==S X = 8 * S + 1 x = int(X**.5) if x*x != X: return -1 # 2n+1==x return (x-1)//2 # E=3 for d in get_divs(pfs): a = d b = N//d if a > b or (a+b) % 2 != 0: continue SR = (a+b)//2 SL = (b-a)//2 R = f(SR) L = f(SL) if L != -1 and R != -1: ANS.append((3, L+1, R)) # E は 4 以上です for E in range(4, 80): S = 0 R = 0 for L in range(1, 10_000_000): while 1: x = R ** E if S + x > N: break R += 1 S += x if L == R: break if S == N: ANS.append((E, L, R - 1)) x = L for _ in range(E - 1): x *= L S -= x ANS.sort() print(len(ANS)) for a, b, c in ANS: print(a, b, c)