#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vvvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vvvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline int getb(T set, int i) { return (set >> i) & T(1); } template inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint998244353; //using mint = static_modint<(int)1e9+7>; //using mint = modint; // mint::set_mod(m); using vm = vector; using vvm = vector; using vvvm = vector; using vvvvm = vector; using pim = pair; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) int mute_dump = 0; int frac_print = 0; #if __has_include() namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } #endif inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_math(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif #include using Bint = boost::multiprecision::cpp_int; //【有限体 F_p 上の計算(64 bit)】 /* * 有限体 F_p 上ので様々な計算を行う. * mll::set_mod(ll p) はあらゆる場所で使う法を書き換えてしまうので注意. * * 制約 : p は素数 */ struct mll { // verify : https://judge.yosupo.jp/problem/factorize Bint v; inline static Bint MOD; // コンストラクタ mll() noexcept : v(0) {} mll(const mll& a) = default; mll(int a) noexcept : v(a% MOD) { if (v < 0) v += MOD; } mll(long int a) noexcept : v(a% MOD) { if (v < 0) v += MOD; } mll(ll a) noexcept : v(a% MOD) { if (v < 0) v += MOD; } mll(Bint a) noexcept : v(a% MOD) { if (v < 0) v += MOD; } // 代入 mll& operator=(const mll& a) = default; mll& operator=(int a) { v = a % MOD; if (v < 0) v += MOD; return *this; } mll& operator=(ll a) { v = a % MOD; if (v < 0) v += MOD; return *this; } mll& operator=(Bint a) { v = a % MOD; if (v < 0) v += MOD; return *this; } // 入出力 friend istream& operator>>(istream& is, mll& x) { Bint tmp; is >> tmp; x.v = tmp % MOD; if (x.v < 0) x.v += MOD; return is; } friend ostream& operator<<(ostream& os, const mll& x) { os << (Bint)x.v; return os; } // 比較(参考 : https://twitter.com/KakurenboUni/status/1717463221190414472) friend bool operator==(const mll& a, const mll& b) { return a.v == b.v; } friend bool operator!=(const mll& a, const mll& b) { return a.v != b.v; } // 単項演算 mll operator-() const { mll a; if (v > 0) a.v = MOD - v; return a; } mll& operator++() { v++; if (v == MOD) v = 0; return *this; } mll operator++(int) { mll tmp = *this; ++(*this); return tmp; } mll& operator--() { v--; if (v == -1) v = MOD - 1; return *this; } mll operator--(int) { mll tmp = *this; --(*this); return tmp; } // 二項演算 mll& operator+=(const mll& b) { v += b.v; if (v >= MOD) v -= MOD; return *this; } mll& operator-=(const mll& b) { v -= b.v; if (v < 0) v += MOD; return *this; } mll& operator*=(const mll& b) { v = (v * b.v) % MOD; return *this; } mll& operator/=(const mll& b) { *this *= b.inv(); return *this; } friend mll operator+(mll a, const mll& b) { a += b; return a; } friend mll operator-(mll a, const mll& b) { a -= b; return a; } friend mll operator*(mll a, const mll& b) { a *= b; return a; } friend mll operator/(mll a, const mll& b) { a /= b; return a; } // 累乗 mll pow(Bint d) const { mll res(1), pow2 = *this; while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d >>= 1; } return res; } // 逆元 mll inv() const { Assert(v != 0); return pow((ll)(MOD - 2)); } // 法の設定,確認 static void set_mod(Bint MOD_) { Assert(MOD_ > 0); MOD = MOD_; } static Bint mod() { return (Bint)MOD; } // 値の確認 Bint val() const { return (Bint)v; } }; //【素数判定】O((log n)^3) /* * n が素数かを返す. * * 利用:【有限体 F_p 上の計算(64 bit)】 */ bool miller_rabin(Bint n) { // 参考 : https://nyaannyaan.github.io/library/prime/fast-factorize.hpp.html // verify : https://judge.yosupo.jp/problem/primality_test //【方法】 // p を奇素数とすると,任意の a∈[1..p) についてフェルマーの小定理より // a^(p-1) ≡ 1 (mod p) // となる.これの平方根を考えていくと, // p-1 = 2^s d (d : 奇数) // と表せば, // a^d ≡ 1 (mod p) or ∃r=[0..s), a^(2^r d) ≡ -1 (mod p) // と書き直せる. // // この対偶を用いて判定することをランダムに選んだ a で繰り返す. // n < 2^64 に範囲を限定するなら擬素数を生じない a を固定的に選べる. const vl as = { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 }; // だめ if (n == 2 || n == 3 || n == 5 || n == 13 || n == 19 || n == 73 || n == 193 || n == 407521 || n == 299210837) return true; if (n == 1 || n % 2 == 0) return false; mll::set_mod(n); int s = 0; Bint d = n - 1; while (d % 2 == 0) { s++; d /= 2; } repe(a, as) { mll powa = mll(a).pow(d); if (powa == 1 || powa == -1) goto LOOP_END; rep(r, s - 1) { powa *= powa; if (powa == 1) return false; if (powa == -1) goto LOOP_END; } return false; LOOP_END:; } return true; } //【約数検出】O(n^(1/4)) /* * n の真の約数を何か 1 つ返す(失敗すれば n を返す) * * 制約 : n は非素数 * * 利用:【有限体 F_p 上の計算(64 bit)】 */ template T pollard_rho(T n) { // 参考 : https://qiita.com/Kiri8128/items/eca965fe86ea5f4cbb98 // verify : https://judge.yosupo.jp/problem/factorize //【方法】 // 適当な定数 c をとり関数 f : Z/nZ → Z/nZ を // f(x) = x^2 + c // と定める. // // 適当な初期値 x[0] = y[0] (= 2) から始め,Z/nZ 上の数列を漸化式 // x[i+1] = f(x[i]), y[i+1] = f(f(y[i])) // で定める.フロイドの循環検出法より,もし // gcd(x[i] - y[i], n) = g ∈ [2..n-1] // であれば,これは f が Z/gZ(g は n の真の約数)で巡回したことを意味する. // // 実際には, // x は r = (2 冪) 個ずつ進める(定数 1/2 倍) // gcd の計算を m = n^(1/8) 程度個まとめて行う(gcd の log を落とす) // ことにより高速化を図る. if (!(n & 1)) return 2; int m = 1 << (msb(n) / 8); mll::set_mod(n); // n は合成数だが割り算は使わないので問題ない const int c_max = 99; // c を最大どこまで試すか repi(c, 1, c_max) { auto f = [&](mll x) { return x * x + c; }; mll x, y = 2, y_bak; T g = 1; int r = 1; // g = 1 である間は巡回未検出 while (g == 1) { // x, y を r = 2^i だけ一気に進める. x = y; rep(hoge, r) y = f(y); // 次の r = 2^i 個をまとめて見る. for (int k = 0; k < r; k += m) { // 一気に掛けすぎて g = n となってしまった場合の復元用 y_bak = y; // m 個ごとにまとめて見る. mll mul = 1; rep(i, min(m, r - k)) { y = f(y); // 複数個掛けておき,後でまとめて gcd を計算する. //(フロイドの循環検出法とは違い x を固定しているが, // 巡回は検出できるので問題ない.) mul *= x - y; } g = (T)gcd(mul.val(), (ll)n); // g != 1 なら巡回を検出できたので次の処理へ if (g != 1) goto LOOP_END; } r *= 2; } LOOP_END:; // 一気に掛けすぎて g = n となってしまった(であろう)場合 if (g == n) { // 復元用に残しておいた x, y_bak から再スタート g = 1; while (g == 1) { y_bak = f(y_bak); g = (T)gcd((x - y_bak).val(), (ll)n); } } // g < n なら g が n の真の約数なのでそれを返す. if (g < n) return g; // 本当に g = n ならたまたま真の約数が全て同時検出されてしまったので, // 関数 f における定数項 c の値を別のものに取り替えて再挑戦. } // 複数個の c を試してなお失敗したなら諦める. return n; } //【素因数分解】O(n^(1/4)) /* * n を素因数分解した結果を pps に格納し pps を返す. * pps[p] = d : n に素因数 p が d 個含まれていることを表す. * * 利用:【素数判定】,【約数検出】 */ template map factor_integer(T n) { // verify : https://judge.yosupo.jp/problem/factorize map pps; if (n == 1) return map(); // 検出した約数を記録しておくキュー queue divs; divs.push(n); while (!divs.empty()) { T d = divs.front(); divs.pop(); // 約数が素数なら素因数発見 if (miller_rabin(d)) { pps[d]++; } // 約数が合成数なら新たな約数を 2 つ発見する else { T d1 = pollard_rho(d); T d2 = d / d1; divs.push(d1); divs.push(d2); } } return pps; } //【約数列挙】O(n^(1/4)) /* * n の約数全てを昇順に格納したリストを返す. * * 利用:【素因数分解】 */ vector divisors(Bint n) { // verify : https://atcoder.jp/contests/chokudai_S002/tasks/chokudai_S002_j Assert(n > 0); map pps = factor_integer(n); vector divs{ 1 }; repe(pp, pps) { auto [p, d] = pp; vector powp(d); powp[0] = p; rep(i, d - 1) powp[i + 1] = powp[i] * p; int m = sz(divs); repir(j, m - 1, 0) rep(i, d) divs.push_back(divs[j] * powp[i]); } return divs; } //【累乗(切り詰め)】O(log_a(inf)) /* * 非負整数 a, n に対し min(a^n, inf) を返す. */ Bint truncated_pow(Bint a, ll n) { // verify : https://atcoder.jp/contests/abc322/tasks/abc322_g Bint inf = Bint((ll)1e13) * Bint((ll)1e13); Assert(a >= 0 && n >= 0); if (n == 0 || a == 1) return 1; if (a == 0) return 0; Bint val = 1; for (ll i = 0; i < n; i++) { // val * a >= inf if (val >= (inf + a - 1) / a) { val = inf; break; } val *= a; } return val; } //【めぐる式二分探索】O(log|ok - ng|) /* * 条件 okQ() を満たす要素 ok と満たさない要素 ng との境界を二分探索する. * 境界に隣り合うような条件を満たす要素(ok 側)の位置を返す. * debug_mode = true にして実行すると手元では単調かどうかチェックしながら全探索する. */ template T meguru_search(T ok, T ng, const FUNC& okQ, bool debug_mode = false) { // 参考 : https://twitter.com/meguru_comp/status/697008509376835584 // verify : https://atcoder.jp/contests/typical90/tasks/typical90_a Assert(ok != ng); #ifdef _MSC_VER // 単調かどうか自信がないとき用 if (debug_mode) { T step = ok < ng ? 1 : -1; T res = ok; bool is_ok = true; for (T i = ok; i != ng + step; i += step) { auto b = (i == ok ? true : i == ng ? false : okQ(i)); if (b) { if (!is_ok) { cout << "not monotony!" << endl; for (T i = ok; i != ng + step; i += step) { auto b = (i == ok ? true : i == ng ? false : okQ(i)); cout << i << " : " << b << endl; } exit(1); } } else { if (is_ok) res = i - step; is_ok = false; } } return res; } #endif // 境界が決定するまで while (abs(ok - ng) > 1) { // 区間の中間 T mid = (ok + ng) / 2; // 中間が OK かどうかに応じて区間を縮小する. if (okQ(mid)) ok = mid; else ng = mid; } return ok; /* okQ の定義の雛形 using T = ll; auto okQ = [&](T x) { return true || false; }; auto x = meguru_search(ok, ng, okQ); */ } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); Bint n; cin >> n; vector> res; repe(w, divisors(2 * n)) { using T = Bint; auto okQ = [&](T l) { Bint s = (w * (-1 + 2 * l + w)) / 2; return s <= n; }; auto l = meguru_search(1, n + 1, okQ); Bint s = (w * (-1 + 2 * l + w)) / 2; if (s == n) res.push_back({ 1, l, l + w - 1 }); } repe(w, divisors(6 * n)) { using T = Bint; auto okQ = [&](T l) { Bint s = (w * (1 - 6 * l + 6 * l * l - 3 * w + 6 * l * w + 2 * w * w)) / 6; return s <= n; }; auto l = meguru_search(1, n + 1, okQ); Bint s = (w * (1 - 6 * l + 6 * l * l - 3 * w + 6 * l * w + 2 * w * w)) / 6; if (s == n) res.push_back({ 2, l, l + w - 1 }); } repe(w, divisors(4 * n)) { using T = Bint; auto okQ = [&](T l) { Bint s = (w * (-1 + 2 * l + w) * (-2 * l + 2 * l * l - w + 2 * l * w + w * w)) / 4; return s <= n; }; auto l = meguru_search(1, n + 1, okQ); Bint s = (w * (-1 + 2 * l + w) * (-2 * l + 2 * l * l - w + 2 * l * w + w * w)) / 4; if (s == n) res.push_back({ 3, l, l + w - 1 }); } repi(e, 4, 80) { Bint l = 1, r = 1; Bint s = 1; Bint l_max = (ll)pow((double)n, 1. / e) + 1; while (l <= l_max) { if (s == n) { res.push_back({ e, l, r }); } if (s <= n) { r++; s += truncated_pow(r, e); } else { s -= truncated_pow(l, e); l++; } } } sort(all(res)); cout << sz(res) << endl; for (auto [e, l, r] : res) cout << e << " " << l << " " << r << endl; }