#[allow(unused_imports)] use std::{ convert::{Infallible, TryFrom, TryInto as _}, fmt::{self, Debug, Display, Formatter,}, fs::{File}, hash::{Hash, Hasher, BuildHasherDefault}, iter::{Product, Sum}, marker::PhantomData, ops::{Add, AddAssign, Sub, SubAssign, Div, DivAssign, Mul, MulAssign, Neg, RangeBounds}, str::FromStr, sync::{atomic::{self, AtomicU32, AtomicU64}, Once}, collections::{*, btree_set::Range, btree_map::Range as BTreeRange}, mem::{swap}, cmp::{self, Reverse, Ordering, Eq, PartialEq, PartialOrd}, thread::LocalKey, f64::consts::PI, time::Instant, cell::RefCell, io::{self, stdin, Read, read_to_string, BufWriter, BufReader, stdout, Write}, }; pub trait SortD{ fn sort_d(&mut self); } impl SortD for Vec{ fn sort_d(&mut self) { self.sort_by(|u, v| v.cmp(&u)); } } pub trait Mx{fn max(&self, rhs: Self)->Self;} impl Mx for f64{ fn max(&self, rhs: Self)->Self{if *self < rhs{ rhs } else { *self } }} pub trait Mi{ fn min(&self, rhs: Self)->Self; } impl Mi for f64{ fn min(&self, rhs: Self)->Self{ if *self > rhs{ rhs } else { *self } } } pub fn gcd(mut a: i64, mut b: i64)->i64{ if b==0{return a;}(a,b)=(a.abs(),b.abs());while b!=0{ let c = a;a = b;b = c%b; }a } pub fn factorial_i64(n: usize)->(Vec, Vec){ let mut res = vec![1; n+1];let mut inv = vec![1; n+1];for i in 0..n{ res[i+1] = (res[i]*(i+1)as i64)%MOD; }inv[n] = mod_inverse(res[n], MOD);for i in (0..n).rev(){ inv[i] = inv[i+1]*(i+1) as i64%MOD; }(res, inv) } pub fn floor(a:i64, b:i64)->i64{let res=(a%b+b)%b;(a-res)/b} pub fn extended_gcd(a:i64,b:i64)->(i64,i64,i64) {if b==0{(a,1,0)}else{let(g,x,y)=extended_gcd(b,a%b);(g,y,x-floor(a,b)*y)}} pub fn mod_inverse(a:i64,m:i64)->i64{let(_,x,_) =extended_gcd(a,m);(x%m+m)%m} pub fn comb(a: i64, b: i64, f: &Vec<(i64, i64)>)->i64{ if aVec<(i64, i64)>{ let mut f=vec![(1i64,1i64),(1, 1)];let mut z = 1i64; let mut inv = vec![0; x as usize+10];inv[1] = 1; for i in 2..x+1{z=(z*i)%MOD; let w=(MOD-inv[(MOD%i)as usize]*(MOD/i)%MOD)%MOD; inv[i as usize] = w; f.push((z, (f[i as usize-1].1*w)%MOD));}return f;} pub fn fast_mod_pow(x: i64,p: usize, m: i64)->i64{ let mut res=1;let mut t=x;let mut z=p;while z > 0{ if z%2==1{res = (res*t)%m;}t = (t*t)%m;z /= 2; }res} pub fn vec_out(v: Vec) where T: ToString{ println!("{}", v.iter().map(|x| x.to_string()).collect::>().join(" ")); } pub fn one_add_out(v: Vec){println!("{}", v.iter().map(|x| (x+1).to_string()).collect::>().join(" "));} pub trait Chmax{ fn chmax(&mut self, rhs: Self); } impl Chmax for i64{ fn chmax(&mut self, rhs: Self) { *self = (*self).max(rhs) } } impl Chmax for i32{ fn chmax(&mut self, rhs: Self) { *self = (*self).max(rhs) } } impl Chmax for f64{ fn chmax(&mut self, rhs: Self) { *self = (*self).max(rhs) } } impl Chmax for usize{ fn chmax(&mut self, rhs: Self) { *self = (*self).max(rhs) } } pub trait Chmin { fn chmin(&mut self, rhs: Self); } impl Chmin for i64{ fn chmin(&mut self, rhs: Self) { *self = (*self).min(rhs) } } impl Chmin for i32{ fn chmin(&mut self, rhs: Self) { *self = (*self).min(rhs) } } impl Chmin for f64{ fn chmin(&mut self, rhs: Self) { *self = (*self).min(rhs) } } impl Chmin for usize{ fn chmin(&mut self, rhs: Self) { *self = (*self).min(rhs) } } #[allow(unused)] mod fxhash{ use std::hash::BuildHasherDefault; #[derive(Default)] pub struct FxHasher{ pub hash: u64, } impl std::hash::Hasher for FxHasher{ #[inline(always)] fn finish(&self) -> u64 { self.hash } #[inline(always)] fn write(&mut self, bytes: &[u8]) { let mut h = self.hash; for &b in bytes{ h = h.rotate_left(5)^(b as u64); h = h.wrapping_mul(0x517cc1b727220a95); } self.hash = h; } } pub type FxBuildHasher = BuildHasherDefault; pub type FxMap = std::collections::HashMap; pub type FxSet = std::collections::HashSet; } #[allow(unused_imports)] use fxhash::{FxSet, FxMap, FxBuildHasher}; #[allow(unused_imports)] use proconio::{input, input_interactive, marker::{*}, fastout}; /* #[allow(unused_imports)] use rustc_hash::FxHasher; #[allow(dead_code)] type FxMap = HashMap>; #[allow(dead_code)] type FxSet = HashSet>; #[allow(unused_imports)] use rand::{thread_rng, Rng, seq::SliceRandom, prelude::*}; #[allow(unused_imports)] use itertools::{Itertools}; #[allow(unused_imports)] use ordered_float::OrderedFloat; #[allow(unused_imports)] use num_bigint::BigInt; #[allow(unused_imports)] use ac_library::{*, ModInt998244353 as mint}; #[allow(dead_code)] type MI = StaticModInt;pub fn factorial_mint(n: usize)->(Vec, Vec){ let mut res = vec![mint::new(1); n+1];let mut inv = vec![mint::new(1); n+1];for i in 0..n{res[i+1] = res[i]*(i+1);}inv[n] = mint::new(1)/res[n];for i in (0..n).rev(){inv[i] = inv[i+1]*(i+1);}(res, inv)} */ #[allow(dead_code)] const INF: i64 = 1<<60; #[allow(dead_code)] const I: i32 = 1<<28; #[allow(dead_code)] const MOD: i64 = 998244353; #[allow(dead_code)] const D: [(usize, usize); 4] = [(1, 0), (0, 1), (!0, 0), (0, !0)]; #[allow(dead_code)] const D2: [(usize, usize); 8] = [(1, 0), (1, 1), (0, 1), (!0, 1), (!0, 0), (!0, !0), (0, !0), (1, !0)]; pub trait SegTreeMonoid{ type S: Clone; fn identity() -> Self::S; fn op(a: &Self::S, b: &Self::S) -> Self::S; } pub struct SegTree { n: usize, data: Vec, } impl SegTree { pub fn new(n: usize) -> Self { let n = n.next_power_of_two(); let data = vec![M::identity(); 2 * n]; SegTree{ n, data } } pub fn from(a: Vec) -> Self{ let n = a.len().next_power_of_two(); let mut data = vec![M::identity(); 2*n]; for (i, v) in a.iter().enumerate(){ data[i+n] = v.clone(); } for i in (1..n).rev(){ data[i] = M::op(&data[2*i], &data[2*i+1]); } SegTree{ n, data, } } pub fn set(&mut self, i: usize, x: M::S) { let mut p = i + self.n; self.data[p] = x; while p > 0 { p /= 2; self.data[p] = M::op(&self.data[p << 1], &self.data[(p << 1) | 1]); } } pub fn get(&self, p: usize)->M::S{ self.data[self.n+p].clone() } pub fn push(&mut self, i: usize, x: M::S) { let mut p = i + self.n; self.data[p] = M::op(&self.data[p], &x); while p > 0 { p /= 2; self.data[p] = M::op(&self.data[p << 1], &self.data[(p << 1) | 1]); } } pub fn prod(&mut self, l: usize, r: usize) -> M::S { let mut p_l = l + self.n; let mut p_r = r + self.n; let mut res_l = M::identity(); let mut res_r = M::identity(); while p_l < p_r { if p_l & 1 == 1 { res_l = M::op(&res_l, &self.data[p_l]); p_l += 1; } if p_r & 1 == 1 { p_r -= 1; res_r = M::op(&self.data[p_r], &res_r); } p_l >>= 1; p_r >>= 1; } M::op(&res_l, &res_r) } pub fn all_prod(&mut self)-> M::S { self.data[1].clone() } pub fn max_right(&self, mut l: usize, f: F) -> usize where F: Fn(&M::S)->bool { assert!(f(&M::identity())); // これはバグってくれないと多分デバックが悲惨 if l == self.n { return self.n } l += self.n; let mut ac = M::identity(); while { while l % 2 == 0 { l >>= 1; } if !f(&M::op(&ac, &self.data[l])) { while l < self.n { l <<= 1; let res = M::op(&ac, &self.data[l]); if f(&res) { ac = res; l += 1; } } return l - self.n; } ac = M::op(&ac, &self.data[l]); l += 1; let z = l as isize; (z & -z) != z } {} self.n } pub fn min_left(&self, mut r: usize, f: F) -> usize where F: Fn(&M::S) -> bool { assert!(f(&M::identity())); if r == 0 {return 0} r += self.n; let mut ac = M::identity(); while { r -= 1; while r > 1 && r % 2 == 1 { r >>= 1; } if !f(&M::op(&self.data[r], &ac)) { while r < self.n{ r = 2 * r + 1; let res = M::op(&self.data[r], &ac); if f(&res) { ac = res; r -= 1; } } return r + 1 - self.n; } ac = M::op(&self.data[r], &ac); let z = r as isize; z & -z != z } {} 0 } } struct M; impl SegTreeMonoid for M { type S = i32; fn identity() -> Self::S { 0 } fn op(&a: &Self::S, &b: &Self::S) -> Self::S { a.max(b) } } #[fastout] fn main() { input!{ n: i64, } let mut ans = Vec::new(); for e in 1..=40{ let mut ll = 0; let mut rr = 1i128<<40; 'lp: while ll+1 < rr{ let m = (ll+rr)/2; let mut res = 1; for _ in 0..e{ res = res*m; if res > n as i128{ rr = m; continue 'lp; } } ll = m; } let a = (1..=rr as i64).into_iter().map(|i| i.pow(e as u32)).collect::>(); let mut r = 0; let mut ac = 0; for i in 0..rr as usize{ while r < rr as usize && a[r]+ac <= n{ ac += a[r]; r += 1; } if ac==n{ ans.push((e, i+1, r)); } ac -= a[i]; r.chmax(i+1); } } println!("{}", ans.len()); for &(e, l, r) in &ans{ println!("{} {} {}", e, l, r); } }