using System; (long g, long inv) InvMod(long x, long m) { long a = m, b = x % m; long u = 0, v = 1; while (b != 0) { long q = a / b; (a, b) = (b, a - q * b); (u, v) = (v, u - q * v); } if (u < 0) u += m / a; return (a, u); } int Q = int.Parse(Console.ReadLine()); var M = new int[Q]; var Y = new int[Q]; int N = 0; while (Q-- > 0) { var query = Console.ReadLine().Split(' '); int t = int.Parse(query[0]); if (t == 1) { int m = int.Parse(query[1]); int r = int.Parse(query[2]); if (N > 0 && Y[N - 1] < 0) { M[N] = m; Y[N] = -1; } else { long p = 1, y = r % m; for (int i = 0; i < N; i++) { y -= Y[i] * p % m; if (y < 0) y += m; p = p * M[i] % m; } var (g, x) = InvMod(p, m); if (y % g != 0) { M[N] = 1; Y[N] = -1; } else { M[N] = m /= (int)g; Y[N] = m == 1 ? 0 : (int)((y / g) * x % m); } } N++; } else if (t == 2) { int k = int.Parse(query[1]); N -= k; } else if (t == 3) { int m = int.Parse(query[1]); if (N > 0 && Y[N - 1] < 0) { Console.WriteLine(-1); } else { long x = 0; for (int i = N - 1; i >= 0; i--) x = (x * M[i] + Y[i]) % m; Console.WriteLine(x); } } }