// cf: https://github.com/drken1215/algorithm/blob/master/Geometry/common_tanline.cpp // // 2 円の共通接線 //a // verified: // AOJ Course CGL_7_G: Common Tangent // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_G&lang=ja // // AOJ 2201 Immortal Jewels // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2201 // #include #include #include #include #include using namespace std; //------------------------------// // 基本要素 (点, 線分, 円) //------------------------------// using DD = long double; const DD INF = 1LL<<60; // to be set appropriately const DD EPS = 1e-10; // to be set appropriately const DD PI = acosl(-1.0); DD torad(int deg) {return (DD)(deg) * PI / 180;} DD todeg(DD ang) {return ang * 180 / PI;} /* Point */ struct Point { DD x, y; Point(DD x = 0.0, DD y = 0.0) : x(x), y(y) {} friend ostream& operator << (ostream &s, const Point &p) {return s << '(' << p.x << ", " << p.y << ')';} }; inline Point operator + (const Point &p, const Point &q) {return Point(p.x + q.x, p.y + q.y);} inline Point operator - (const Point &p, const Point &q) {return Point(p.x - q.x, p.y - q.y);} inline Point operator * (const Point &p, DD a) {return Point(p.x * a, p.y * a);} inline Point operator * (DD a, const Point &p) {return Point(a * p.x, a * p.y);} inline Point operator * (const Point &p, const Point &q) {return Point(p.x * q.x - p.y * q.y, p.x * q.y + p.y * q.x);} inline Point operator / (const Point &p, DD a) {return Point(p.x / a, p.y / a);} inline Point conj(const Point &p) {return Point(p.x, -p.y);} inline Point rot(const Point &p, DD ang) {return Point(cos(ang) * p.x - sin(ang) * p.y, sin(ang) * p.x + cos(ang) * p.y);} inline Point rot90(const Point &p) {return Point(-p.y, p.x);} inline DD cross(const Point &p, const Point &q) {return p.x * q.y - p.y * q.x;} inline DD dot(const Point &p, const Point &q) {return p.x * q.x + p.y * q.y;} inline DD norm(const Point &p) {return dot(p, p);} inline DD abs(const Point &p) {return sqrt(dot(p, p));} inline DD amp(const Point &p) {DD res = atan2(p.y, p.x); if (res < 0) res += PI*2; return res;} inline bool eq(const Point &p, const Point &q) {return abs(p - q) < EPS;} inline bool operator < (const Point &p, const Point &q) {return (abs(p.x - q.x) > EPS ? p.x < q.x : p.y < q.y);} inline bool operator > (const Point &p, const Point &q) {return (abs(p.x - q.x) > EPS ? p.x > q.x : p.y > q.y);} inline Point operator / (const Point &p, const Point &q) {return p * conj(q) / norm(q);} /* Line */ struct Line : vector { Line(Point a = Point(0.0, 0.0), Point b = Point(0.0, 0.0)) { this->push_back(a); this->push_back(b); } friend ostream& operator << (ostream &s, const Line &l) {return s << '{' << l[0] << ", " << l[1] << '}';} }; /* Circle */ struct Circle : Point { DD r; Circle(Point p = Point(0.0, 0.0), DD r = 0.0) : Point(p), r(r) {} friend ostream& operator << (ostream &s, const Circle &c) {return s << '(' << c.x << ", " << c.y << ", " << c.r << ')';} }; //------------------------------// // 接線 //------------------------------// // tanline vector tanline(const Point &p, const Circle &c) { vector res; DD d = norm(p - c); DD l = d - c.r * c.r; if (l < -EPS) return res; if (l <= 0.0) l = 0.0; Point cq = (p - c) * (c.r * c.r / d); Point qs = rot90((p - c) * (c.r * sqrt(l) / d)); Point s1 = c + cq + qs, s2 = c + cq - qs; res.push_back(s1); res.push_back(s2); return res; } // common tanline, a and b must be different! // Line[0] is tangent point in a vector comtanline(Circle a, Circle b) { vector res; // intersect if (abs(a - b) > abs(a.r - b.r) + EPS) { if (abs(a.r - b.r) < EPS) { Point dir = b - a; dir = rot90(dir * (a.r / abs(dir))); res.push_back(Line(a + dir, b + dir)); res.push_back(Line(a - dir, b - dir)); } else { Point p = a * -b.r + b * a.r; p = p * (1.0 / (a.r - b.r)); vector bs = tanline(p, a); vector as = tanline(p, b); for (int i = 0; i < min(as.size(), bs.size()); ++i) { res.push_back(Line(bs[i], as[i])); } } } // inscribed else if (abs(abs(a - b) - abs(a.r - b.r)) <= EPS) { Point dir = b - a; if (a.r > b.r) dir = dir * (a.r / abs(dir)); else dir = dir * (-a.r / abs(dir)); Point p = a + dir; res.push_back(Line(p, p + rot90(dir))); } // disjoint if (abs(a - b) > a.r + b.r + EPS) { Point p = a * b.r + b * a.r; p = p * (1.0 / (a.r + b.r)); vector bs = tanline(p, a); vector as = tanline(p, b); for (int i = 0; i < min(as.size(), bs.size()); ++i) { res.push_back(Line(bs[i], as[i])); } } // circumscribed else if (abs(abs(a - b) - (a.r + b.r)) <= EPS) { Point dir = b - a; dir = dir * (a.r / abs(dir)); Point p = a + dir; res.push_back(Line(p, p + rot90(dir))); } return res; } //------------------------------// // Examples //------------------------------// void solve() { Circle p, q; cin >> p.x >> p.y >> p.r >> q.x >> q.y >> q.r; auto l = comtanline(p, q); long double ans = 0; for (auto line : l) { long double x1 = line[0].x, y1 = line[0].y; long double x2 = line[1].x, y2 = line[1].y; long double sum = (1-x1)*(y2-y1)-(1-y1)*(x2-x1); long double a = abs(y2-y1), b = abs(-(x2-x1)), c = abs(-x1*(y2-y1)+y1*(x2-x1)); ans += abs(sum/max({a, b, c})); //cout << x1 << " " << y1 << " " << x2 << " " << y2 << endl; } cout << fixed << setprecision(15) << ans << endl; } int main() { int n; cin >> n; while (n--) { solve(); } }