#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vvvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vvvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline int getb(T set, int i) { return (set >> i) & T(1); } template inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint998244353; //using mint = static_modint<(int)1e9+7>; //using mint = modint; // mint::set_mod(m); using vm = vector; using vvm = vector; using vvvm = vector; using vvvvm = vector; using pim = pair; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) int mute_dump = 0; int frac_print = 0; #if __has_include() namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } #endif inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_math(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif //【平面上の点,二次元ベクトル】 /* * 平面における点/二次元ベクトルを表す構造体 * * Point() : O(1) * (0, 0) で初期化する. * * Point(T x, T y) : O(1) * (x, y) で初期化する. * * p1 == p2, p1 != p2, p1 < p2, p1 > p2, p1 <= p2, p1 >= p2 : O(1) * x 座標優先,次いで y 座標の大小比較を行う. * * p1 + p2, p1 - p2, c * p, p * c, p / c : O(1) * ベクトルとみなした加算,減算,スカラー倍,スカラー除算を行う.複合代入演算子も使用可. * * T sqnorm() : O(1) * 自身の 2 乗ノルムを返す. * * double norm() : O(1) * 自身のノルムを返す. * * Point normalize() : O(1) * 自身を正規化したベクトルを返す. * * T dot(Point p) : O(1) * 自身と p との内積を返す. * * T cross(Point p) : O(1) * 自身と p との外積を返す. * * double angle(Point p) : O(1) * 自身から p までの成す角度を返す. */ template struct Point { // 点の x 座標,y 座標 T x, y; // コンストラクタ Point() : x(0), y(0) {} Point(T x_, T y_) : x(x_), y(y_) {} // 代入 Point(const Point& old) = default; Point& operator=(const Point& other) = default; // キャスト operator Point() const { return Point((ll)x, (ll)y); } operator Point() const { return Point((double)x, (double)y); } // 入出力 friend istream& operator>>(istream& is, Point& p) { is >> p.x >> p.y; return is; } friend ostream& operator<<(ostream& os, const Point& p) { os << '(' << p.x << ',' << p.y << ')'; return os; } // 比較(x 座標優先) bool operator==(const Point& p) const { return x == p.x && y == p.y; } bool operator!=(const Point& p) const { return !(*this == p); } bool operator<(const Point& p) const { return x == p.x ? y < p.y : x < p.x; } bool operator>=(const Point& p) const { return !(*this < p); } bool operator>(const Point& p) const { return x == p.x ? y > p.y : x > p.x; } bool operator<=(const Point& p) const { return !(*this > p); } // 加算,減算,スカラー倍,スカラー除算 Point& operator+=(const Point& p) { x += p.x; y += p.y; return *this; } Point operator+(const Point& p) const { Point q(*this); return q += p; } Point& operator-=(const Point& p) { x -= p.x; y -= p.y; return *this; } Point operator-(const Point& p) const { Point q(*this); return q -= p; } Point& operator*=(const T& c) { x *= c; y *= c; return *this; } Point operator*(const T& c) const { Point q(*this); return q *= c; } Point& operator/=(const T& c) { x /= c; y /= c; return *this; } Point operator/(const T& c) const { Point q(*this); return q /= c; } friend Point operator*(const T& sc, const Point& p) { return p * sc; } Point operator-() const { Point a = *this; return a *= -1; } // 二乗ノルム,ノルム,正規化 T sqnorm() const { return x * x + y * y; } double norm() const { return sqrt((double)x * x + (double)y * y); } Point normalize() const { return Point(*this) / norm(); } // 内積,外積,成す角度 T dot(const Point& other) const { return x * other.x + y * other.y; } T cross(const Point& other) const { return x * other.y - y * other.x; } double angle(const Point& other) const { return atan2(this->cross(other), this->dot(other)); } }; //【平面内の直線,線分】 /* * {a, b} : 2 点 a, b を通る a → b 方向の有向直線を表す. * * その他,無向直線,有向線分,無向線分などを表すのにも用いる. */ template using Line = pair, Point>; //【点と有向線分の位置関係】O(1) /* * 点 p と有向線分 s = a → b の位置関係を返す. * * 戻り値: * 1 : p が s の左側にある場合(a → b → p が反時計回り) * -1 : p が s の右側にある場合(a → b → p が時計回り) * 2 : p が s の b より先にある場合(a < b < p 順) * -2 : p が s の a より後ろにある場合(p < a < b 順) * 0 : p が s 上にある場合(a ≦ p ≦ b 順) */ template inline int ccw(const Point& p, const Line& s) { // verify : https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/all/CGL_1_C auto op = (s.second - s.first).cross(p - s.first); if (op > T(0)) { // p が s の左側にある return 1; } else if (op < T(0)) { // p が s の右側にある return -1; } else { if ((s.first - s.second).dot(p - s.second) < T(0)) { // p が s の前にある return 2; } else if ((s.second - s.first).dot(p - s.first) < T(0)) { // p が s の後ろにある return -2; } else { // p が s 上にある return 0; } } } //【共有判定(閉線分と閉線分)】O(1) /* * 閉線分 s1 と閉線分 s2 が共有点をもつなら true,さもなくば false を返す. * * 利用:【点と有向線分の位置関係】 */ template inline bool intersectQ_CS_CS(const Line& s1, const Line& s2) { // verify : https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/all/CGL_2_B // 共有点をもつ // ⇔ (s1 の両端が s2 について逆側,かつ,s2 の両端が s1 について逆側) // または (s1 の端点が s2 上) または (s2 の端点が s1 上) // // 端点が線分の逆側のとき ccw() の符号が異なり, // 端点が線分上のとき ccw() = 0 となるので,綺麗にまとめられる. return ccw(s2.first, s1) * ccw(s2.second, s1) <= 0 && ccw(s1.first, s2) * ccw(s1.second, s2) <= 0; } using P = Point; vector WA(vector

p) { dump(p); if (abs(p[0].x - p[1].x) + abs(p[0].y - p[1].y) <= 1) return vector(); if (abs(p[2].x - p[3].x) + abs(p[2].y - p[3].y) <= 1) return vector(); if (abs(p[0].x + p[0].y + p[2].x + p[2].y) & 1) return vector(); int L = 185; vector

e(4); e[0] = { 1, 0 }; e[1] = { 0, 1 }; e[2] = { -1, 0 }; e[3] = { 0, -1 }; { vvi dirss{ {3, 1, 2, 0}, {3, 1, 0, 2}, {1, 3, 2, 0}, {1, 3, 0, 2}, {2, 0, 3, 1}, {2, 0, 1, 3}, {0, 2, 3, 1}, {0, 2, 1, 3} }; repe(dirs, dirss) { bool ok = true; rep(i, 4) repi(j, i + 1, 3) { { Line li = { p[i], p[i] + 99999 * e[dirs[i]] }; Line lj = { p[j], p[j] + 99999 * e[dirs[j]] }; if (intersectQ_CS_CS(li, lj)) ok = false; } { auto dd = e[smod(dirs[i] + 1, 4)]; Line li = { p[i] + dd, p[i] + dd + 99999 * e[dirs[i]] }; Line lj = { p[j], p[j] + 99999 * e[dirs[j]] }; if (intersectQ_CS_CS(li, lj)) ok = false; } { auto dd = e[smod(dirs[i] - 1, 4)]; Line li = { p[i] + dd, p[i] + dd + 99999 * e[dirs[i]] }; Line lj = { p[j], p[j] + 99999 * e[dirs[j]] }; if (intersectQ_CS_CS(li, lj)) ok = false; } { auto dd = e[smod(dirs[j] + 1, 4)]; Line li = { p[i], p[i] + 99999 * e[dirs[i]] }; Line lj = { p[j] + dd, p[j] + dd + 99999 * e[dirs[j]] }; if (intersectQ_CS_CS(li, lj)) ok = false; } { auto dd = e[smod(dirs[j] - 1, 4)]; Line li = { p[i], p[i] + 99999 * e[dirs[i]] }; Line lj = { p[j] + dd, p[j] + dd + 99999 * e[dirs[j]] }; if (intersectQ_CS_CS(li, lj)) ok = false; } } if (!ok) continue; set

load, wall; rep(i, 4) { auto q = p[i]; while (max(abs(q.x), abs(q.y)) < L) { load.insert(q); rep(k, 4) wall.insert(q + e[k]); q += e[dirs[i]]; } } repi(x, -L + 1, L - 1) { wall.insert(P(x, -L + 1)); wall.insert(P(x, L - 1)); } repi(y, -L + 1, L - 1) { wall.insert(P(-L + 1, y)); wall.insert(P(L - 1, y)); } repi(i, L, 2 * L) { wall.insert(i * (e[dirs[0]] + e[dirs[2]])); } repe(q, load) { if (wall.count(q)) { wall.erase(q); } } vector res; repe(q, wall) { res.push_back({ q.x, q.y }); } return res; } } { vvi dirss{ {0, 1, 2, 3}, {1, 2, 3, 0}, {2, 3, 0, 1}, {3, 0, 1, 2}, {0, 3, 2, 1}, {3, 2, 1, 0}, {2, 1, 0, 3}, {1, 0, 3, 2} }; repe(dirs, dirss) { bool ok = true; rep(i, 4) repi(j, i + 1, 3) { { Line li = { p[i], p[i] + 99999 * e[dirs[i]] }; Line lj = { p[j], p[j] + 99999 * e[dirs[j]] }; if (intersectQ_CS_CS(li, lj)) ok = false; } { auto dd = e[smod(dirs[i] + 1, 4)]; Line li = { p[i] + dd, p[i] + dd + 99999 * e[dirs[i]] }; Line lj = { p[j], p[j] + 99999 * e[dirs[j]] }; if (intersectQ_CS_CS(li, lj)) ok = false; } { auto dd = e[smod(dirs[i] - 1, 4)]; Line li = { p[i] + dd, p[i] + dd + 99999 * e[dirs[i]] }; Line lj = { p[j], p[j] + 99999 * e[dirs[j]] }; if (intersectQ_CS_CS(li, lj)) ok = false; } { auto dd = e[smod(dirs[j] + 1, 4)]; Line li = { p[i], p[i] + 99999 * e[dirs[i]] }; Line lj = { p[j] + dd, p[j] + dd + 99999 * e[dirs[j]] }; if (intersectQ_CS_CS(li, lj)) ok = false; } { auto dd = e[smod(dirs[j] - 1, 4)]; Line li = { p[i], p[i] + 99999 * e[dirs[i]] }; Line lj = { p[j] + dd, p[j] + dd + 99999 * e[dirs[j]] }; if (intersectQ_CS_CS(li, lj)) ok = false; } } if (!ok) continue; set

load, wall; rep(i, 4) { auto q = p[i]; while (max(abs(q.x), abs(q.y)) < L) { load.insert(q); rep(k, 4) wall.insert(q + e[k]); q += e[dirs[i]]; } } repi(x, -L + 1, L - 1) { wall.insert(P(x, -L + 1)); wall.insert(P(x, L - 1)); } repi(y, -L + 1, L - 1) { wall.insert(P(-L + 1, y)); wall.insert(P(L - 1, y)); } repi(i, L, 2 * L) { wall.insert(i * (e[dirs[2]] + e[dirs[3]])); } repe(q, load) { if (wall.count(q)) { wall.erase(q); } } vector res; repe(q, wall) { res.push_back({ q.x, q.y }); } return res; } } return vector(); } //【迷路】O(h w) /* * 壁が wall で表された h×w の迷路 c について,スタート (sx, sy) から * 各マス c[i][j] への最短経路長(到達不能なら INF)を返す. * *(格子上の幅優先探索) */ template vvi solve_maze(const vector>& c, int sx, int sy, const T wall = '#') { // verify : https://atcoder.jp/contests/abc317/tasks/abc317_e int h = sz(c), w = sz(c[0]); vvi dist(h, vi(w, INF)); if (c[sx][sy] == wall) return dist; dist[sx][sy] = 0; // q : 未探索のマスを記録しておくキュー queue q; q.push({ sx, sy }); while (!q.empty()) { auto [x, y] = q.front(); q.pop(); // マス (x, y) の 4 近傍を調べる. rep(k, 4) { // (nx, ny) : (x, y) の近傍の座標 int nx = x + DX[k]; int ny = y + DY[k]; // 範囲外または壁マスなら何もしない. if (!inQ(nx, ny, 0, 0, h, w) || c[nx][ny] == wall) continue; // 既に最短経路長が確定済みなら何もしない. if (dist[nx][ny] != INF) continue; // 最短経路長の確定 dist[nx][ny] = dist[x][y] + 1; q.push({ nx, ny }); } } return dist; } vector solveAC(int ax, int ay, int bx, int by, int cx, int cy, int dx, int dy, bool rev) { int L = 105; //L = 5; vvc G(2 * L + 1, vc(2 * L + 1, '.')); rep(k, 4) { G[bx + DX[k] + L][by + DY[k] + L] = '#'; G[dx + DX[k] + L][dy + DY[k] + L] = '#'; } auto dist = solve_maze(G, ax + L, ay + L); int dist_ac = dist[cx + L][cy + L]; dump("dist_ac:", dist_ac); if (dist_ac == INF) return vector(); if (rev) { reverse(DX, DX + 4); reverse(DY, DY + 4); } int x = cx, y = cy; vector path_ac{ {x,y} }; while (x != ax || y != ay) { rep(k, 4) { if (dist[x + DX[k] + L][y + DY[k] + L] == dist[x + L][y + L] - 1) { x += DX[k]; y += DY[k]; break; } } path_ac.push_back({ x, y }); } dump("path_ac:", path_ac); if (rev) { reverse(DX, DX + 4); reverse(DY, DY + 4); } rep(k, 4) { G[bx + DX[k] + L][by + DY[k] + L] = '.'; G[dx + DX[k] + L][dy + DY[k] + L] = '.'; } auto [mx, my] = path_ac[dist_ac / 2]; for (auto [x, y] : path_ac) { if (x == mx && y == my) continue; rep(k, 4) { G[x + DX[k] + L][y + DY[k] + L] = '#'; } } G[mx + L][my + L] = '.'; G[bx + L][by + L] = '.'; G[dx + L][dy + L] = '#'; //dumpel(G); dist = solve_maze(G, mx + L, my + L); if (dist[bx + L][by + L] == INF) return vector(); x = bx, y = by; vector path_mb{ {x,y} }; while (x != mx || y != my) { rep(k, 4) { if (dist[x + DX[k] + L][y + DY[k] + L] == dist[x + L][y + L] - 1) { x += DX[k]; y += DY[k]; break; } } path_mb.push_back({ x, y }); } dump("path_mb:", path_mb); G[bx + L][by + L] = '#'; G[dx + L][dy + L] = '.'; //dumpel(G); dist = solve_maze(G, mx + L, my + L); if (dist[dx + L][dy + L] == INF) return vector(); x = dx, y = dy; vector path_md{ {x,y} }; while (x != mx || y != my) { rep(k, 4) { if (dist[x + DX[k] + L][y + DY[k] + L] == dist[x + L][y + L] - 1) { x += DX[k]; y += DY[k]; break; } } path_md.push_back({ x, y }); } dump("path_md:", path_md); set walls; for (auto [x, y] : path_ac) { rep(k, 4) walls.insert({ x + DX[k], y + DY[k] }); } for (auto [x, y] : path_mb) { rep(k, 4) walls.insert({ x + DX[k], y + DY[k] }); } for (auto [x, y] : path_md) { rep(k, 4) walls.insert({ x + DX[k], y + DY[k] }); } for (auto [x, y] : path_ac) { walls.erase({ x, y }); } for (auto [x, y] : path_mb) { walls.erase({ x, y }); } for (auto [x, y] : path_md) { walls.erase({ x, y }); } return vector(all(walls)); } /* これでダメなケース: ...D ....C. ..C. D..oo. .B.. ...o.B A... .Aoo.. */ vector solveAD(int ax, int ay, int bx, int by, int cx, int cy, int dx, int dy, bool rev, bool rev2, bool rev3, bool rev4, int lx, int ly) { int L = 200; //L = 5; vvc G(2 * L + 1, vc(2 * L + 1, '.')); rep(k, 4) { G[bx + DX[k] + L][by + DY[k] + L] = '#'; G[cx + DX[k] + L][cy + DY[k] + L] = '#'; } auto dist = solve_maze(G, ax + L, ay + L); if (dist[dx + L][dy + L] == INF) return vector(); if (rev) { reverse(DX, DX + 4); reverse(DY, DY + 4); } int x = dx, y = dy; vector path_ad{ {x,y} }; while (x != ax || y != ay) { rep(k, 4) { if (dist[x + DX[k] + L][y + DY[k] + L] == dist[x + L][y + L] - 1) { x += DX[k]; y += DY[k]; break; } } path_ad.push_back({ x, y }); } dump("path_ad:", path_ad); if (rev) { reverse(DX, DX + 4); reverse(DY, DY + 4); } rep(k, 4) { G[bx + DX[k] + L][by + DY[k] + L] = '.'; G[cx + DX[k] + L][cy + DY[k] + L] = '.'; } auto [mx, my] = path_ad[1]; for (auto [x, y] : path_ad) { if (x == mx && y == my) continue; rep(k, 4) { G[x + DX[k] + L][y + DY[k] + L] = '#'; } } G[mx + L][my + L] = '.'; dist = solve_maze(G, bx + L, by + L); if (dist[cx + L][cy + L] == INF) return vector(); if (rev2) { reverse(DX, DX + 4); reverse(DY, DY + 4); } x = cx, y = cy; vector path_bc{ {x,y} }; while (x != bx || y != by) { rep(k, 4) { if (dist[x + DX[k] + L][y + DY[k] + L] == dist[x + L][y + L] - 1) { x += DX[k]; y += DY[k]; break; } } path_bc.push_back({ x, y }); } dump("path_bc:", path_bc); if (rev2) { reverse(DX, DX + 4); reverse(DY, DY + 4); } auto [nx, ny] = path_bc[1]; for (auto [x, y] : path_bc) { if (x == nx && y == ny) continue; rep(k, 4) { G[x + DX[k] + L][y + DY[k] + L] = '#'; } } G[nx + L][ny + L] = '.'; dist = solve_maze(G, mx + L, my + L); if (dist[lx + L][ly + L] == INF) return vector(); if (rev3) { reverse(DX, DX + 4); reverse(DY, DY + 4); } x = lx, y = ly; vector path_ml{ {x,y} }; while (x != mx || y != my) { rep(k, 4) { if (dist[x + DX[k] + L][y + DY[k] + L] == dist[x + L][y + L] - 1) { x += DX[k]; y += DY[k]; break; } } path_ml.push_back({ x, y }); } dump("path_ml:", path_ml); if (rev3) { reverse(DX, DX + 4); reverse(DY, DY + 4); } for (auto [x, y] : path_ml) { if (x == lx && y == ly) continue; rep(k, 4) { G[x + DX[k] + L][y + DY[k] + L] = '#'; } } G[lx + L][ly + L] = '.'; dist = solve_maze(G, nx + L, ny + L); if (dist[lx + L][ly + L] == INF) return vector(); if (rev4) { reverse(DX, DX + 4); reverse(DY, DY + 4); } x = lx, y = ly; vector path_nl{ {x,y} }; while (x != nx || y != ny) { rep(k, 4) { if (dist[x + DX[k] + L][y + DY[k] + L] == dist[x + L][y + L] - 1) { x += DX[k]; y += DY[k]; break; } } path_nl.push_back({ x, y }); } dump("path_nl:", path_nl); if (rev4) { reverse(DX, DX + 4); reverse(DY, DY + 4); } set walls; for (auto [x, y] : path_ad) { rep(k, 4) walls.insert({ x + DX[k], y + DY[k] }); } for (auto [x, y] : path_bc) { rep(k, 4) walls.insert({ x + DX[k], y + DY[k] }); } for (auto [x, y] : path_ml) { rep(k, 4) walls.insert({ x + DX[k], y + DY[k] }); } for (auto [x, y] : path_nl) { rep(k, 4) walls.insert({ x + DX[k], y + DY[k] }); } for (auto [x, y] : path_ad) { walls.erase({ x, y }); } for (auto [x, y] : path_bc) { walls.erase({ x, y }); } for (auto [x, y] : path_ml) { walls.erase({ x, y }); } for (auto [x, y] : path_nl) { walls.erase({ x, y }); } return vector(all(walls)); } void Main() { int ax, ay, bx, by, cx, cy, dx, dy; cin >> ax >> ay >> bx >> by >> cx >> cy >> dx >> dy; swap(bx, cx); swap(by, cy); if (abs(ax + ay + cx + cy) & 1) { cout << -1 << "\n"; return; } rep(rev, 2) { auto res = solveAC(ax, ay, bx, by, cx, cy, dx, dy, rev); if (!res.empty()) { cout << sz(res) << "\n"; for (auto [x, y] : res) cout << x << " " << y << "\n"; return; } } rep(rev, 2) rep(rev2, 2) rep(rev3, 2) rep(rev4, 2) rep(sx, 2) rep(sy, 2) { auto res = solveAD(ax, ay, bx, by, cx, cy, dx, dy, rev, rev2, rev3, rev4, (sx ? 1 : -1) * 196, (sy ? 1 : -1) * 196); if (!res.empty()) { cout << sz(res) << "\n"; for (auto [x, y] : res) cout << x << " " << y << "\n"; return; } } exit(-1); cout << -1 << "\n"; } int main() { input_from_file("input.txt"); // output_to_file("output.txt"); int t = 1; cin >> t; // マルチテストケースの場合 while (t--) { dump("------------------------------"); Main(); } }