#if __INCLUDE_LEVEL__ == 0 #include __BASE_FILE__ using Mint = atcoder::modint998244353; void Solve() { string s; IN(s); int n = Sz(s); vector pos; pos.reserve(ranges::count(s, 'A')); for (int i : Rep(0, n)) { if (s[i] == 'A') { pos.push_back(i); } } int N = Sz(pos); vector A(N); vector B(N); for (int i : Rep(0, N)) { B[i] = pos[i] - i + 1; } OUT(nachia::main(N, n, A, B)); } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); Solve(); } #elif __INCLUDE_LEVEL__ == 1 #include // https://judge.yosupo.jp/submission/214966 namespace nachia { template class Comb { private: std::vector F; std::vector iF; public: void extend(int newN) { int prevN = (int)F.size() - 1; if (prevN >= newN) return; F.resize(newN + 1); iF.resize(newN + 1); for (int i = prevN + 1; i <= newN; i++) F[i] = F[i - 1] * Modint::raw(i); iF[newN] = F[newN].inv(); for (int i = newN; i > prevN; i--) iF[i - 1] = iF[i] * Modint::raw(i); } Comb(int n = 1) { F.assign(2, Modint(1)); iF.assign(2, Modint(1)); extend(n); } Modint factorial(int n) const { return F[n]; } Modint invFactorial(int n) const { return iF[n]; } Modint invOf(int n) const { return iF[n] * F[n - 1]; } Modint comb(int n, int r) const { if (n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[r] * iF[n - r]; } Modint invComb(int n, int r) const { if (n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[r] * F[n - r]; } Modint perm(int n, int r) const { if (n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[n - r]; } Modint invPerm(int n, int r) const { if (n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[n - r]; } Modint operator()(int n, int r) const { return comb(n, r); } }; } // namespace nachia namespace nachia { template Fps countStairSequenseBetweenTwoSequences( std::vector L, std::vector U, Fps In) { assert(L.size() == U.size()); using Elem = typename Fps::ElemTy; int length = int(L.size()); for (int i = 0; i + 1 < length; i++) if (L[i + 1] < L[i]) L[i + 1] = L[i]; for (int i = length - 2; i >= 0; i--) if (L[i] < L[i + 1] - 1) L[i] = L[i + 1] - 1; for (int i = 0; i + 1 < length; i++) if (U[i + 1] > U[i] + 1) U[i + 1] = U[i] + 1; for (int i = length - 2; i >= 0; i--) if (U[i] > U[i + 1]) U[i] = U[i + 1]; if (L[length - 1] > U[length - 1]) return Fps(0); for (int i = 0; i < length; i++) if (L[i] > U[i]) return Fps(U[length - 1] - L[length - 1] + 1); auto comb = nachia::Comb(length + 1); auto combFps = [&](int n) -> Fps { Fps res(n + 1); for (int i = 0; i <= n; i++) res[i] = comb(n, i); return res; }; auto transition = [&](int l, int r, const Fps& I, int off) -> Fps { return I.convolve(combFps(r - l), I.size() + r - l); }; auto dfs_low = [&](auto dfs, int l, int r, Fps I) -> Fps { if (r - l == 1) { auto res = transition(l, r, I, L[l]); if (L[l] != L[r]) res = res.clip(1); return res; } int m = l + (r - l) / 2; auto resm = transition(l, m, I.clip(L[m] - L[l]), L[m]); auto buf = dfs(dfs, l, m, I.clip(0, L[m] - L[l])); for (int i = 0; i < buf.size(); i++) resm[i] += buf[i]; auto resr = transition(m, r, resm.clip(L[r] - L[m]), L[r]); buf = dfs(dfs, m, r, resm.clip(0, L[r] - L[m])); for (int i = 0; i < buf.size(); i++) resr[i] += buf[i]; return resr; }; auto dfs_high = [&](auto& dfs, int l, int r, Fps I) -> Fps { if (r - l == 1) { if (U[l] == U[r]) return Fps(0); return transition(l, r, I, U[l] + 1 - (r - l)).clip(1); } int m = l + (r - l) / 2; auto resm = transition(l, m, I, U[l] + 1 - (r - l)).clip(m - l, r - l, 0, U[m] - U[l] + r - m); auto buf = dfs(dfs, l, m, I.clip(r - m)); for (int i = 0; i < buf.size(); i++) resm[i + (r - m)] += buf[i]; auto resr = transition(m, r, resm, U[l] + 1 - (r - m)).clip(r - m, r - m + U[m] - U[l], 0, U[r] - U[l]); buf = dfs(dfs, m, r, resm.clip(U[m] - U[l])); for (int i = 0; i < buf.size(); i++) resr[i + (U[m] - U[l])] += buf[i]; return resr; }; auto dfs = [&](auto dfs, int l, int r, Fps I) -> Fps { if (r - l == 1) { auto res = transition(l, r, I, L[l]); return res.clip(L[r] - L[l], U[r] + 1 - L[l]); } if (L[r] + (r - l) < U[l]) { Fps res1 = transition(l, r, I.clip(L[r] - L[l]), L[r]).clip(0, U[l] + 1 - L[r], 0, U[r] + 1 - L[r]); Fps res2 = dfs_low(dfs_low, l, r, I.clip(0, L[r] - L[l])); Fps res3 = dfs_high(dfs_high, l, r, I.clip(I.size() - (r - l))); for (int i = 0; i < res2.size(); i++) res1[i] += res2[i]; for (int i = 0; i < res3.size(); i++) res1[res1.size() - 1 - i] += res3[res3.size() - 1 - i]; return res1; } int m = (l + r) / 2; return dfs(dfs, m, r, dfs(dfs, l, m, I.move())); }; return dfs(dfs, 0, length - 1, In.move()); } } // namespace nachia namespace nachia { template struct PrimitiveRoot { using u64 = unsigned long long; static constexpr u64 powm(u64 a, u64 i) { u64 res = 1, aa = a; for (; i; i /= 2) { if (i & 1) res = res * aa % MOD; aa = aa * aa % MOD; } return res; } static constexpr bool ExamineVal(unsigned int g) { u64 t = MOD - 1; for (u64 d = 2; d * d <= t; d += 1 + (d & 1)) if (t % d == 0) { if (powm(g, (MOD - 1) / d) == 1) return false; while (t % d == 0) t /= d; } if (t != 1) if (powm(g, (MOD - 1) / t) == 1) return false; return true; } static constexpr unsigned int GetVal() { for (u64 x = 2; x < MOD; x++) if (ExamineVal(x)) return x; return 0; } static const unsigned int val = GetVal(); }; } // namespace nachia namespace nachia { int Popcount(unsigned long long c) noexcept { return __builtin_popcountll(c); } int MsbIndex(unsigned long long x) noexcept { return 63 - __builtin_clzll(x); } int LsbIndex(unsigned long long x) noexcept { return __builtin_ctzll(x); } } // namespace nachia namespace nachia { template struct NttInterface { template void Butterfly(Iter, int) const {} template void IButterfly(Iter, int) const {} template void BitReversal(Iter a, int N) const { for (int i = 0, j = 0; j < N; j++) { if (i < j) std::swap(a[i], a[j]); for (int k = N >> 1; k > (i ^= k); k >>= 1) ; } } }; } // namespace nachia namespace nachia { template struct Ntt : NttInterface { using u32 = unsigned int; using u64 = unsigned long long; static int ceil_pow2(int n) { int x = 0; while ((1U << x) < (u32)(n)) x++; return x; } static constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } struct fft_info { static constexpr u32 g = nachia::PrimitiveRoot::val; static constexpr int rank2 = bsf_constexpr(mint::mod() - 1); using RootTable = std::array; RootTable root, iroot, rate3, irate3; fft_info() { root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } }; template void ButterflyLayered(RandomAccessIterator a, int n, int stride, int repeat) const { static const fft_info info; int h = n * stride; while (repeat--) { int len = 1; int p = h; if (ceil_pow2(n) % 2 == 1) { p >>= 1; for (int i = 0; i < p; i++) { mint l = a[i], r = a[i + p]; a[i] = l + r; a[i + p] = l - r; } len <<= 1; } for (; p > stride;) { p >>= 2; mint rot = 1, imag = info.root[2]; u64 mod2 = u64(mint::mod()) * mint::mod(); int offset = p; for (int s = 0; s < len; s++) { if (s) rot *= info.rate3[LsbIndex(~(u32)(s - 1))]; mint rot2 = rot * rot; mint rot3 = rot2 * rot; for (int i = offset - p; i < offset; i++) { u64 a0 = u64(a[i].val()); u64 a1 = u64(a[i + p].val()) * rot.val(); u64 a2 = u64(a[i + 2 * p].val()) * rot2.val(); u64 a3 = u64(a[i + 3 * p].val()) * rot3.val(); u64 a1na3imag = u64(mint(a1 + mod2 - a3).val()) * imag.val(); u64 na2 = mod2 - a2; a[i] = a0 + a2 + a1 + a3; a[i + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + 2 * p] = a0 + na2 + a1na3imag; a[i + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } offset += p << 2; } len <<= 2; } a += h; } } template void Butterfly(RandomAccessIterator a, int n) const { ButterflyLayered(a, n, 1, 1); } template void IButterflyLayered(RandomAccessIterator a, int n, int stride, int repeat) const { static const fft_info info; constexpr int MOD = mint::mod(); while (repeat--) { int len = n; int p = stride; for (; 2 < len;) { len >>= 2; mint irot = 1, iimag = info.iroot[2]; int offset = p; for (int s = 0; s < len; s++) { if (s) irot *= info.irate3[LsbIndex(~(u32)(s - 1))]; mint irot2 = irot * irot; mint irot3 = irot2 * irot; for (int i = offset - p; i < offset; i++) { u64 a0 = a[i].val(); u64 a1 = a[i + p].val(); u64 a2 = a[i + 2 * p].val(); u64 a3 = a[i + 3 * p].val(); u64 a2na3iimag = mint((a2 + MOD - a3) * iimag.val()).val(); a[i] = a0 + a1 + a2 + a3; a[i + p] = (a0 + (MOD - a1) + a2na3iimag) * irot.val(); a[i + 2 * p] = (a0 + a1 + (MOD - a2) + (MOD - a3)) * irot2.val(); a[i + 3 * p] = (a0 + (MOD - a1) + (MOD - a2na3iimag)) * irot3.val(); } offset += p << 2; } p <<= 2; } if (len == 2) { for (int i = 0; i < p; i++) { mint l = a[i], r = a[i + p]; a[i] = l + r; a[i + p] = l - r; } p <<= 1; } a += p; } } template void IButterfly(RandomAccessIterator a, int n) const { IButterflyLayered(a, n, 1, 1); } }; } // namespace nachia namespace nachia { template > struct FpsNtt { public: using Fps = FpsNtt; using ElemTy = Elem; static constexpr unsigned int MOD = Elem::mod(); static constexpr int CONV_THRES = 30; static const NttInst nttInst; static const unsigned int zeta = nachia::PrimitiveRoot::GetVal(); private: using u32 = unsigned int; static Elem ZeroElem() noexcept { return Elem(0); } static Elem OneElem() noexcept { return Elem(1); } static Comb comb; std::vector a; int RSZ(int& sz) const { return sz = (sz < 0 ? size() : sz); } public: int size() const noexcept { return a.size(); } Elem& operator[](int x) noexcept { return a[x]; } const Elem& operator[](int x) const noexcept { return a[x]; } Elem getCoeff(int x) const noexcept { return (0 <= x && x < size()) ? a[x] : ZeroElem(); } static Comb& GetComb() { return comb; } static int BestNttSize(int x) noexcept { assert(x); return 1 << MsbIndex(x * 2 - 1); } Fps move() { return std::move(*this); } Fps& set(int i, Elem c) { a[i] = c; return *this; } Fps& removeLeadingZeros() { int newsz = size(); while (newsz && a[newsz - 1].val() == 0) newsz--; a.resize(newsz); if ((int)a.capacity() / 4 > newsz) a.shrink_to_fit(); return *this; } FpsNtt() {} FpsNtt(int sz) : a(sz, ZeroElem()) {} FpsNtt(int sz, Elem e) : a(sz, e) {} FpsNtt(std::vector&& src) : a(std::move(src)) {} FpsNtt(const std::vector& src) : a(src) {} Fps& ntt() { capSize(BestNttSize(size())); nttInst.Butterfly(a.begin(), size()); return *this; } Fps& intt() { nttInst.IButterfly(a.begin(), a.size()); return times(Elem::raw(size()).inv()); } Fps nttDouble(Fps vanilla) const { int n = size(); assert(n != 0 && n == (n & -n)); Elem q = Elem::raw(zeta).pow((Elem::mod() - 1) / (n * 2)); Elem qq = OneElem(); for (int i = 0; i < n; i++) { vanilla[i] *= qq; qq *= q; } vanilla.ntt(); Fps res = clip(0, n * 2); for (int i = 0; i < n; i++) res[n + i] = vanilla[i]; return res; } Fps nttDouble() const { return nttDouble(clip().intt().move()); } Fps clip(int srcL, int srcR = -1, int destL = 0, int resSz = -1) const { srcR = RSZ(srcR); if (resSz < 0) resSz = destL + srcR - srcL; int rj = std::min(std::min(srcR, size()) - srcL, resSz - destL); Fps res(resSz); for (int j = std::max(0, -srcL); j < rj; j++) res[j + destL] = a[j + srcL]; return res; } Fps clip() const { return *this; } Fps& capSize(int l, int r) { if (r <= (int)size()) a.resize(r); if (size() <= l) a.resize(l, ZeroElem()); return *this; } Fps& capSize(int z) { a.resize(RSZ(z), ZeroElem()); return *this; } Fps& times(Elem x) { for (int i = 0; i < size(); i++) { a[i] *= x; } return *this; } Fps& timesFactorial(int z = -1) { comb.extend(RSZ(z)); for (int i = 0; i < z; i++) { a[i] *= comb.factorial(i); } return *this; } Fps& timesInvFactorial(int z = -1) { comb.extend(RSZ(z)); for (int i = 0; i < z; i++) { a[i] *= comb.invFactorial(i); } return *this; } Fps& clrRange(int l, int r) { for (int i = l; i < r; i++) { a[i] = ZeroElem(); } return *this; } Fps& negate() { for (auto& e : a) { e = -e; } return *this; } Fps& mulEach(const Fps& other, int maxi = -1) { maxi = std::min(RSZ(maxi), std::min(size(), other.size())); for (int i = 0; i < maxi; i++) a[i] *= other[i]; return *this; } Fps& reverse(int sz = -1) { RSZ(sz); std::reverse(a.begin(), a.begin() + sz); return *this; } Fps& revRange(int l, int r = -1) { RSZ(r); std::reverse(a.begin() + l, a.begin() + r); return *this; } static Fps convolution(const Fps& a, const Fps& b, int sz = -1) { if (std::min(a.size(), b.size()) <= CONV_THRES) { if (a.size() > b.size()) return convolution(b, a, sz); if (sz < 0) sz = std::max(0, a.size() + b.size() - 1); std::vector res(sz); for (int i = 0; i < a.size(); i++) for (int j = 0; j < b.size() && i + j < sz; j++) res[i + j] += a[i] * b[j]; return res; } int Z = BestNttSize(a.size() + b.size() - 1); return a.clip(0, Z).ntt().mulEach(b.clip(0, Z).ntt()).intt().capSize(sz).move(); } Fps convolve(const Fps& r, int sz = -1) const { return convolution(*this, r, sz); } Fps powerSum(int sz) const { RSZ(sz); if (sz == 0) return {}; int q = std::min(sz, 32); Fps x = Fps(q).set(0, OneElem()).move(); for (int i = 1; i < q; i++) for (int j = 1; j <= std::min(i, (int)a.size() - 1); j++) x[i] += x[i - j] * a[j]; while (x.size() < sz) { int hN = x.size(), N = hN * 2; Fps a = x.clip(0, N).ntt().move(); Fps b = clip(0, N).ntt().mulEach(a).intt().clrRange(0, hN).ntt().mulEach(a).intt().move(); for (int i = 0; i < hN; i++) b[i] = x[i]; std::swap(b, x); } return x.capSize(sz).move(); } Fps inv(int sz = -1) const { RSZ(sz); Elem iA0 = a[0].inv(); return clip(0, std::min(sz, size())).times(-iA0).set(0, ZeroElem()).powerSum(sz).times(iA0).move(); } Fps& difference() { if (size() == 0) return *this; for (int i = 0; i + 1 < size(); i++) a[i] = a[i + 1] * Elem::raw(i + 1); return capSize(size() - 1); } Fps& integral() { if (size() == 0) return capSize(1); capSize(size() + 1); comb.extend(size()); for (int i = size() - 1; i >= 1; i--) a[i] = a[i - 1] * comb.invOf(i); return set(0, ZeroElem()); } Fps log(int sz = -1) { RSZ(sz); assert(sz != 0); assert(a[0].val() == 1); return convolution(inv(sz), clip().difference(), sz - 1).integral(); } Fps exp(int sz = -1) { RSZ(sz); Fps res = Fps(1).set(0, OneElem()); while (res.size() < sz) { auto z = res.size(); auto tmp = res.capSize(z * 2).log().set(0, -OneElem()).move(); for (int i = 0; i < z * 2 && i < size(); i++) tmp[i] -= a[i]; auto resntt = res.clip().ntt().mulEach(tmp.ntt()).intt().move(); for (int i = z; i < z * 2; i++) res[i] = -resntt[i]; } return res.capSize(0, sz).move(); } Fps pow(unsigned long long k, int sz = -1) { int n = RSZ(sz); if (k == 0) return Fps(n).set(0, OneElem()).move(); int ctz = 0; while (ctz < n && a[ctz].val() == 0) ctz++; if ((unsigned long long)ctz >= (n - 1) / k + 1) return Fps(n); Elem a0 = a[ctz]; return clip(ctz, ctz + n - ctz * k).times(a0.inv()).log().times(Elem(k)).exp().times(a0.pow(k)).clip(0, -1, ctz * k); } auto begin() { return a.begin(); } auto end() { return a.end(); } auto begin() const { return a.begin(); } auto end() const { return a.end(); } std::string toString(std::string beg = "[ ", std::string delim = " ", std::string en = " ]") const { std::string res = beg; bool f = false; for (auto x : a) { if (f) { res += delim; } f = true; res += std::to_string(x.val()); } res += en; return res; } std::vector getVectorMoved() { return std::move(a); } Fps& operator+=(const Fps& r) { capSize(std::max(size(), r.size())); for (int i = 0; i < r.size(); i++) a[i] += r[i]; return *this; } Fps& operator-=(const Fps& r) { capSize(std::max(size(), r.size())); for (int i = 0; i < r.size(); i++) a[i] -= r[i]; return *this; } Fps operator+(const Fps& r) const { return (clip(0, std::max(size(), r.size())) += r).move(); } Fps operator-(const Fps& r) const { return (clip(0, std::max(size(), r.size())) -= r).move(); } Fps operator-() const { return (clip().negate()).move(); } Fps operator*(const Fps& r) const { return convolve(r).removeLeadingZeros().move(); } Fps& operator*=(const Fps& r) { return (*this) = operator*(r); } Fps& operator*=(Elem m) { return times(m); } Fps operator*(Elem m) const { return (clip() *= m).move(); } Elem eval(Elem x) const { Elem res = 0; for (int i = size() - 1; i >= 0; i--) res = res * x + a[i]; return res; } }; template Comb FpsNtt::comb; template const NttInst FpsNtt::nttInst; } // namespace nachia namespace nachia { std::pair ExtGcd(long long a, long long b) { long long x = 1, y = 0; while (b) { long long u = a / b; std::swap(a -= b * u, b); std::swap(x -= y * u, y); } return std::make_pair(x, a); } } // namespace nachia namespace nachia { template struct StaticModint { private: using u64 = unsigned long long; unsigned int x; public: using my_type = StaticModint; template static Elem safe_mod(Elem x) { if (x < 0) { if (0 <= x + MOD) return x + MOD; return MOD - ((-(x + MOD) - 1) % MOD + 1); } return x % MOD; } StaticModint() : x(0) {} StaticModint(const my_type& a) : x(a.x) {} StaticModint& operator=(const my_type&) = default; template StaticModint(Elem v) : x(safe_mod(v)) {} unsigned int operator*() const noexcept { return x; } my_type& operator+=(const my_type& r) noexcept { auto t = x + r.x; if (t >= MOD) t -= MOD; x = t; return *this; } my_type operator+(const my_type& r) const noexcept { my_type res = *this; return res += r; } my_type& operator-=(const my_type& r) noexcept { auto t = x + MOD - r.x; if (t >= MOD) t -= MOD; x = t; return *this; } my_type operator-(const my_type& r) const noexcept { my_type res = *this; return res -= r; } my_type operator-() const noexcept { my_type res = *this; res.x = ((res.x == 0) ? 0 : (MOD - res.x)); return res; } my_type& operator*=(const my_type& r) noexcept { x = (u64)x * r.x % MOD; return *this; } my_type operator*(const my_type& r) const noexcept { my_type res = *this; return res *= r; } my_type pow(unsigned long long i) const noexcept { my_type a = *this, res = 1; while (i) { if (i & 1) { res *= a; } a *= a; i >>= 1; } return res; } my_type inv() const { return my_type(ExtGcd(x, MOD).first); } unsigned int val() const noexcept { return x; } static constexpr unsigned int mod() { return MOD; } static my_type raw(unsigned int val) noexcept { auto res = my_type(); res.x = val; return res; } my_type& operator/=(const my_type& r) { return operator*=(r.inv()); } my_type operator/(const my_type& r) const { return operator*(r.inv()); } }; } // namespace nachia namespace nachia { using Modint = nachia::StaticModint<998244353>; using Fps = nachia::FpsNtt; int main(int N, int M, std::vector A, std::vector B) { for (int i = 0; i < N; i++) { std::swap(A[i], B[i]); A[i] = M - A[i]; B[i] = M - B[i]; } std::reverse(A.begin(), A.end()); std::reverse(B.begin(), B.end()); std::vector L(N + M, 0), U(N + M, M - 1); U[0] = 0; L[N + M - 1] = M - 1; for (int i = 0; i < N; i++) if (L[i + A[i]] < A[i]) L[i + A[i]] = A[i]; for (int i = 0; i < N; i++) if (U[i + B[i]] > B[i] - 1) U[i + B[i]] = B[i] - 1; auto ans = countStairSequenseBetweenTwoSequences(std::move(L), std::move(U), Fps(1).set(0, 1))[0]; return ans.val(); } } // namespace nachia #include template concept MyRange = std::ranges::range && !std::convertible_to; template concept MyTuple = std::__is_tuple_like::value && !MyRange; namespace std { istream& operator>>(istream& is, MyRange auto&& r) { for (auto&& e : r) is >> e; return is; } istream& operator>>(istream& is, MyTuple auto&& t) { apply([&](auto&... xs) { (is >> ... >> xs); }, t); return is; } ostream& operator<<(ostream& os, MyRange auto&& r) { auto sep = ""; for (auto&& e : r) os << exchange(sep, " ") << e; return os; } ostream& operator<<(ostream& os, MyTuple auto&& t) { auto sep = ""; apply([&](auto&... xs) { ((os << exchange(sep, " ") << xs), ...); }, t); return os; } template * = nullptr> istream& operator>>(istream& is, T& x) { int v; is >> v; x = T::raw(v); return is; } template * = nullptr> ostream& operator<<(ostream& os, const T& x) { return os << x.val(); } } // namespace std using namespace std; #define Rep(...) [](int l, int r) { return views::iota(min(l, r), r); }(__VA_ARGS__) #define Sz(r) int(size(r)) #define IN(...) (cin >> forward_as_tuple(__VA_ARGS__)) #define OUT(...) (cout << forward_as_tuple(__VA_ARGS__) << '\n') #endif // __INCLUDE_LEVEL__ == 1