// https://judge.yosupo.jp/submission/319327 #include using namespace std; #include #include //modint+畳み込み+逆元テーブル // from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9 // (based on AtCoder STL) #include #include #ifdef _MSC_VER #include #endif namespace atcoder { namespace internal { int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder #include namespace atcoder { namespace internal { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } struct barrett { unsigned int _m; unsigned long long im; barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; for (long long a : {2, 7, 61}) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace atcoder #include #include #include namespace atcoder { namespace internal { #ifndef _MSC_VER template using is_signed_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_unsigned_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using make_unsigned_int128 = typename std::conditional::value, __uint128_t, unsigned __int128>; template using is_integral = typename std::conditional::value || is_signed_int128::value || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using is_signed_int = typename std::conditional<(is_integral::value && std::is_signed::value) || is_signed_int128::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional<(is_integral::value && std::is_unsigned::value) || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional< is_signed_int128::value, make_unsigned_int128, typename std::conditional::value, std::make_unsigned, std::common_type>::type>::type; #else template using is_integral = typename std::is_integral; template using is_signed_int = typename std::conditional::value && std::is_signed::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional::value && std::is_unsigned::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional::value, std::make_unsigned, std::common_type>::type; #endif template using is_signed_int_t = std::enable_if_t::value>; template using is_unsigned_int_t = std::enable_if_t::value>; template using to_unsigned_t = typename to_unsigned::type; } // namespace internal } // namespace atcoder #include #include #include #ifdef _MSC_VER #include #endif namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template using is_modint = std::is_base_of; template using is_modint_t = std::enable_if_t::value>; } // namespace internal template * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template * = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } static_modint(bool v) { _v = ((unsigned int)(v) % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime; }; template struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template * = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template internal::barrett dynamic_modint::bt = 998244353; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template using is_static_modint = std::is_base_of; template using is_static_modint_t = std::enable_if_t::value>; template struct is_dynamic_modint : public std::false_type {}; template struct is_dynamic_modint> : public std::true_type {}; template using is_dynamic_modint_t = std::enable_if_t::value>; } // namespace internal } // namespace atcoder #include #include #include namespace atcoder { namespace internal { template * = nullptr> void butterfly(std::vector& a) { static constexpr int g = internal::primitive_root; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i < cnt2 - 2; i++) { sum_e[i] = es[i] * now; now *= ies[i]; } } for (int ph = 1; ph <= h; ph++) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint now = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * now; a[i + offset] = l + r; a[i + offset + p] = l - r; } now *= sum_e[bsf(~(unsigned int)(s))]; } } } template * = nullptr> void butterfly_inv(std::vector& a) { static constexpr int g = internal::primitive_root; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i < cnt2 - 2; i++) { sum_ie[i] = ies[i] * now; now *= es[i]; } } for (int ph = h; ph >= 1; ph--) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint inow = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val(); } inow *= sum_ie[bsf(~(unsigned int)(s))]; } } } } // namespace internal template * = nullptr> std::vector convolution(std::vector a, std::vector b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) { if (n < m) { std::swap(n, m); std::swap(a, b); } std::vector ans(n + m - 1); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } return ans; } int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); mint iz = mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } template ::value>* = nullptr> std::vector convolution(const std::vector& a, const std::vector& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; using mint = static_modint; std::vector a2(n), b2(m); for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); } for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); } auto c2 = convolution(move(a2), move(b2)); std::vector c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } std::vector convolution_ll(const std::vector& a, const std::vector& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second; static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second; static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto c1 = convolution(a, b); auto c2 = convolution(a, b); auto c3 = convolution(a, b); std::vector c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { unsigned long long x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } } // namespace atcoder using mint=atcoder::modint998244353; namespace po167{ template struct Binomial{ std::vector fact_vec, fact_inv_vec; void extend(int m = -1){ int n = fact_vec.size(); if (m == -1) m = n * 2; if (n >= m) return; fact_vec.resize(m); fact_inv_vec.resize(m); for (int i = n; i < m; i++){ fact_vec[i] = fact_vec[i - 1] * T(i); } fact_inv_vec[m - 1] = T(1) / fact_vec[m - 1]; for (int i = m - 1; i > n; i--){ fact_inv_vec[i - 1] = fact_inv_vec[i] * T(i); } } Binomial(int MAX = 0){ fact_vec.resize(1, T(1)); fact_inv_vec.resize(1, T(1)); extend(MAX + 1); } T fact(int i){ if (i < 0) return 0; while (int(fact_vec.size()) <= i) extend(); return fact_vec[i]; } T invfact(int i){ if (i < 0) return 0; while (int(fact_inv_vec.size()) <= i) extend(); return fact_inv_vec[i]; } T C(int a, int b){ if (a < b || b < 0) return 0; return fact(a) * invfact(b) * invfact(a - b); } T invC(int a, int b){ if (a < b || b < 0) return 0; return fact(b) * fact(a - b) *invfact(a); } T P(int a, int b){ if (a < b || b < 0) return 0; return fact(a) * invfact(a - b); } T inv(int a){ if (a < 0) return inv(-a) * T(-1); if (a == 0) return 1; return fact(a - 1) * invfact(a); } T Catalan(int n){ if (n < 0) return 0; return fact(2 * n) * invfact(n + 1) * invfact(n); } T narayana(int n, int k){ if (n <= 0 || n < k || k < 1) return 0; return C(n, k) * C(n, k - 1) * inv(n); } T Catalan_pow(int n,int d){ if (n < 0 || d < 0) return 0; if (d == 0){ if (n == 0) return 1; return 0; } return T(d) * inv(d + n) * C(2 * n + d - 1, n); } // retrun [x^a] 1/(1-x)^b T ruiseki(int a,int b){ if (a < 0 || b < 0) return 0; if (a == 0){ return 1; } return C(a + b - 1, b - 1); } // (a, b) -> (c, d) // always x + e >= y T mirror(int a, int b, int c, int d, int e = 0){ if (a + e < b || c + e < d) return 0; if (a > c || b > d) return 0; a += e; c += e; return C(c + d - a - b, c - a) - C(c + d - a - b, c - b + 1); } // return sum_{i = 0, ... , a} sum_{j = 0, ... , b} C(i + j, i) // return C(a + b + 2, a + 1) - 1; T gird_sum(int a, int b){ if (a < 0 || b < 0) return 0; return C(a + b + 2, a + 1) - 1; } // return sum_{i = a, ..., b - 1} sum_{j = c, ... , d - 1} C(i + j, i) // AGC 018 E T gird_sum_2(int a, int b, int c, int d){ if (a >= b || c >= d) return 0; a--, b--, c--, d--; return gird_sum(a, c) - gird_sum(a, d) - gird_sum(b, c) + gird_sum(b, d); } // the number of diagonal dissections of a convex n-gon into k+1 regions. // OEIS A033282 // AGC065D T diagonal(int n, int k){ if (n <= 2 || n - 3 < k || k < 0) return 0; return C(n - 3, k) * C(n + k - 1, k) * inv(k + 1); } }; } #line 4 "fps/FPS_cyclic_convolution.hpp" namespace po167{ // |f| = |g| = 2 ^ n template std::vector FPS_cyclic_convolution(std::vector f, std::vector g){ atcoder::internal::butterfly(f); atcoder::internal::butterfly(g); for (int i = 0; i < (int)f.size(); i++) f[i] *= g[i]; atcoder::internal::butterfly_inv(f); T iz = (T)(1) / (T)(f.size()); for (int i = 0; i < (int)f.size(); i++) f[i] *= iz; return f; } } #line 5 "fps/count_increasing_sequences.hpp" namespace po167{ template std::pair, std::vector> count_square(std::vector L, std::vector D){ assert(!L.empty() && !D.empty()); int N = L.size(); int M = D.size(); if (std::min(N, M) <= 200){ int sw = 0; if (N > M) std::swap(N, M), std::swap(L, D), sw = 1; std::vector R(N); for (int i = 0; i < N; i++){ D[0] += L[i]; for (int j = 1; j < M; j++) D[j] += D[j - 1]; R[i] = D.back(); } if (sw) std::swap(R, D); return {R, D}; } po167::Binomial table(N + M); std::vector R(N), U(M); int z = 0; while ((1 << z) < (N + M - 1)) z++; // 左から右 { std::vector tmp(N); for (int i = 0; i < N; i++) tmp[i] = table.C(M - 1 + i, i); tmp = atcoder::convolution(tmp, L); for (int i = 0; i < N; i++) R[i] += tmp[i]; } // 左から上 { std::vector tmp(1 << z); for (int i = 0; i < N; i++) L[i] *= table.invfact(N - 1 - i); for (int i = 0; i < N + M - 1; i++) tmp[i] = table.fact(i); L.resize(1 << z, 0); tmp = po167::FPS_cyclic_convolution(tmp, L); for (int i = 0; i < M; i++) U[i] += tmp[N - 1 + i] * table.invfact(i); } // 下から上 { std::vector tmp(M); for (int i = 0; i < M; i++) tmp[i] = table.C(N - 1 + i, i); tmp = atcoder::convolution(tmp, D); for (int i = 0; i < M; i++) U[i] += tmp[i]; } // 下から右 { std::vector tmp(1 << z); for (int i = 0; i < M; i++) D[i] *= table.invfact(M - i - 1); for (int i = 0; i < N + M - 1; i++) tmp[i] = table.fact(i); D.resize(1 << z, 0); tmp = po167::FPS_cyclic_convolution(tmp, D); for (int i = 0; i < N; i++) R[i] += tmp[M - 1 + i] * table.invfact(i); } return {R, U}; } template /* * g(A, x) を * 0 <= B[i] < A[i] かつ B[i] = x を満たす * 広義単調増加列 B の数とする * res[x] = sum C[i] * g(A[i:N], x) * を返す */ std::vector count_increase_sequences_with_upper_bounds(std::vector A, std::vector C){ int N = A.size(); assert((int)C.size() == N); assert(N); for (int i = (int)(A.size()) - 1; i > 0; i--) A[i - 1] = std::min(A[i - 1], A[i]); if (A.back() == 0) return {}; if (std::min(A.back(), N) <= 200){ std::vector dp(0); dp.reserve(A.back()); for (int i = 0; i < N; i++){ dp.resize(A[i], 0); if (A[i]) dp[0] += C[i]; for (int j = 1; j < (int)dp.size(); j++){ dp[j] += dp[j - 1]; } } return dp; } if (N == 1){ std::vector res(A[0]); for (int i = 0; i < A[0]; i++) res[i] = C[0]; return res; } int m = N / 2; std::vector LA(m), RA(N - m); std::vector LC(m), RC(N - m); for (int i = 0; i < m; i++){ LA[i] = A[i]; LC[i] = C[i]; } for (int i = 0; i < N - m; i++){ RA[i] = A[i + m] - A[m - 1]; RC[i] = C[i + m]; } std::vector res; res.reserve(A.back()); auto L = count_increase_sequences_with_upper_bounds(LA, LC); if (!L.empty()){ auto [R, U] = count_square(L, RC); for (int i = 0; i < (int)R.size(); i++) res.push_back(R[i]); std::swap(U, RC); } auto R = count_increase_sequences_with_upper_bounds(RA, RC); for (auto x : R) res.push_back(x); return res; } template std::vector NAIVE_count_increase_sequences_with_upper_lower_bounds(std::vector A, std::vector B, std::vector C = {}){ std::vector tmp(B.back() - A[0]); if (C.empty()){ int b = B[0]; for (int i = 1; i < (int)B.size(); i++) b = std::min(b, B[i]); for (int i = 0; i < b - A[0]; i++) tmp[i] = 1; } else for (int i = 0; i < (int)std::min(tmp.size(), C.size()); i++) tmp[i] = C[i]; int N = A.size(); for (int i = 1; i < N; i++){ for (int j = 1; j < (int)tmp.size(); j++){ tmp[j] += tmp[j - 1]; } for (int j = 0; j < (int)tmp.size(); j++){ if (j < A[i] - A[0] || B[i] - A[0] <= j) tmp[j] = 0; } } std::vector res(B.back() - A.back()); for (int i = 0; i < B.back() - A.back(); i++){ res[i] = tmp[A.back() - A[0] + i]; } return res; } template /* * f(a, b) を X[0] = a, X[N - 1] = b であるような、A, B に挟まれたものとする * 長さ B[N - 1] - A[N - 1] を返す * res[b - A.back()] = sum C[a - A[0]] * f(a, b) * A, B は広義単調増加が嬉しい */ std::vector count_increase_sequences_with_upper_lower_bounds(std::vector A, std::vector B, std::vector C = {}){ int N = A.size(); assert(A.size() == B.size()); for (int i = 0; i < N - 1; i++){ A[i + 1] = std::max(A[i], A[i + 1]); } for (int i = N - 1; i > 0; i--){ B[i - 1] = std::min(B[i], B[i - 1]); } if (A.back() >= B.back()) return {}; // A[0] == 0 にする std::vector res(B.back() - A.back(), 0); { int tmp = A[0]; for (int i = 0; i < N; i++){ A[i] -= tmp; B[i] -= tmp; if (A[i] >= B[i]) return res; } } if (C.empty()){ C.resize(B[0] - A[0], 1); } else assert((int)(C.size()) == B[0] - A[0]); int l = 0; while (B[l] <= A.back()){ for (int i = (int)(C.size()) - 1; i > 0; i--) C[i] -= C[i - 1]; int nl = l; while (A[nl] < B[l]) nl++; std::vector tmp(B[l] - A[l]); tmp[0] = 1; for (int i = l; i < nl; i++){ tmp[A[i] - A[l]]++; } for (int i = 1; i < B[l] - A[l]; i++) tmp[i] += tmp[i - 1]; auto X = count_increase_sequences_with_upper_bounds(tmp, C); std::vector nB(nl - l + 1); for (int i = l; i <= nl; i++){ nB[i - l] = B[i] - B[l]; } auto Y = count_increase_sequences_with_upper_bounds(nB, X); C.resize(B[nl] - A[nl]); for (int i = 0; i < B[nl] - A[nl]; i++){ C[i] = Y[i + A[nl] - B[l]]; } l = nl; } // A を揃えてしまえ { int a = A[l]; for (int i = l; i < N; i++){ A[i] -= a; B[i] -= a; } } for (int i = (int)(C.size()) - 1; i > 0; i--) C[i] -= C[i - 1]; std::vector D(N - l, 0); if (A.back() != 0){ std::vector L(A.back()); for (int i = 0; i < (int)L.size(); i++) L[i] = C[i]; std::vector tmp(L.size()); tmp[0] = 1; for (int i = l; i < N; i++){ if (A[i] < (int)tmp.size()) tmp[A[i]]++; } for (int i = 1; i < (int)tmp.size(); i++){ tmp[i] += tmp[i - 1]; } auto nD = count_increase_sequences_with_upper_bounds(tmp, L); for (int i = 0; i < (int)nD.size(); i++) D[i] = nD[i]; } for (int i = A.back(); i < B[l]; i++) C[i - A.back()] = C[i]; C.resize(B[l] - A.back()); auto [R, U] = count_square(C, D); res = R; std::vector nB(N - l); for (int i = 0; i < N - l; i++) nB[i] = B[i + l] - B[l]; R = count_increase_sequences_with_upper_bounds(nB, U); for (auto x : R) res.push_back(x); return res; } } #line 2 "a.cpp" #include int main() { string S;cin>>S; int la=-1; vector A,B; for(int i=0;i(A, B); mint ans = 0; for (auto x : tmp) ans += x; std::cout << ans.val() << "\n"; } }