use std::collections::*; type Set = BTreeSet; fn main() { input! { n: usize, h: usize, w: usize, p: [(usize, usize, usize, usize); n], } let mut set = vec![]; for _ in 0..=(h + 1) { set.push((0..=(w + 1)).collect::>()); } let mut g = vec![vec![]; n]; for (g, &(a, b, c, d)) in g.iter_mut().zip(p.iter()) { for (i, s) in set[a..=b].iter_mut().enumerate() { let d = s.range(c..=d).cloned().collect::>(); for d in d.iter() { s.remove(d); } g.extend(d.iter().map(|j| (a + i, *j))); } } let pos = |x, y| x * (w + 2) + y; let d = [(1, 0), (0, 1), (!0, 0), (0, !0)]; let neighbor = |x: usize, y: usize| { d.iter().map(move |d| (x + d.0, y + d.1)).filter(|p| p.0 < h + 2 && p.1 < w + 2) }; let mut dp = vec![0; (h + 2) * (w + 2)]; let mut state = vec![false; (h + 2) * (w + 2)]; let mut sum = 0; let mut dsu = DSU::new((h + 2) * (w + 2)); for (i, s) in set.into_iter().enumerate() { for j in s { dp[pos(i, j)] = 1; sum += 1; state[pos(i, j)] = true; for (x, y) in neighbor(i, j) { if state[pos(x, y)] { if let Some((p, c)) = dsu.unite(pos(x, y), pos(i, j)) { dp[p] += dp[c]; } } } } } let mut ans = vec!["Yes"; n]; for (ans, g) in ans.iter_mut().zip(g.iter()).rev() { if dp[dsu.root(0)] == sum { *ans = "No"; } for &(a, b) in g.iter() { dp[pos(a, b)] += 1; sum += 1; state[pos(a, b)] = true; for (x, y) in neighbor(a, b) { if state[pos(x, y)] { if let Some((p, c)) = dsu.unite(pos(x, y), pos(a, b)) { dp[p] += dp[c]; } } } } } for a in ans { println!("{}", a); } } // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- //---------- begin union_find ---------- pub struct DSU { p: Vec, } impl DSU { pub fn new(n: usize) -> DSU { assert!(n < std::i32::MAX as usize); DSU { p: vec![-1; n] } } pub fn init(&mut self) { self.p.iter_mut().for_each(|p| *p = -1); } pub fn root(&self, mut x: usize) -> usize { assert!(x < self.p.len()); while self.p[x] >= 0 { x = self.p[x] as usize; } x } pub fn same(&self, x: usize, y: usize) -> bool { assert!(x < self.p.len() && y < self.p.len()); self.root(x) == self.root(y) } pub fn unite(&mut self, x: usize, y: usize) -> Option<(usize, usize)> { assert!(x < self.p.len() && y < self.p.len()); let mut x = self.root(x); let mut y = self.root(y); if x == y { return None; } if self.p[x] > self.p[y] { std::mem::swap(&mut x, &mut y); } self.p[x] += self.p[y]; self.p[y] = x as i32; Some((x, y)) } pub fn parent(&self, x: usize) -> Option { assert!(x < self.p.len()); let p = self.p[x]; if p >= 0 { Some(p as usize) } else { None } } pub fn sum(&self, mut x: usize, mut f: F) -> usize where F: FnMut(usize), { while let Some(p) = self.parent(x) { f(x); x = p; } x } pub fn size(&self, x: usize) -> usize { assert!(x < self.p.len()); let r = self.root(x); (-self.p[r]) as usize } } //---------- end union_find ----------