import sys # sys.setrecursionlimit(200005) # sys.set_int_max_str_digits(200005) int1 = lambda x: int(x)-1 pDB = lambda *x: print(*x, end="\n", file=sys.stderr) p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr) def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] # inf = -1-(-1 << 31) inf = -1-(-1 << 62) # md = 10**9+7 md = 998244353 from math import gcd # 拡張ユークリッドの互除法(非再帰) # ax+by=gcd(a,b)となるx,yとgcd(a,b)が返る # extgcd(a,mod)でg=1のときx=(aの逆元) # ax≡b (mod m)を解くためにaの逆元を求めるときは # gcd(a,b,m)でa,b,mを割ってからやること # そして、a・a^-1==1か、確認すること def extgcd(a, b): qq = [] while b: a, b, _ = b, a%b, qq.append(a//b) x = y = 1 for q in qq[::-1]: x, y = y, x-q*y if a < 0: return -x, -y, -a return x, y, a def eq(a,b,m): g=gcd(gcd(a,b),m) a,b,m=a//g,b//g,m//g inv,_,_=extgcd(a,m) if a*inv%m==1:return b*inv%m return -1 def solve(): s,m=SI().split() m=int(m) l=len(s) x=int(s) a=pow(10,l,m) for k in range(l,19): d=k-2*l if d<0: d=-d if s[-d:]==s[:d] and int(s+s[d:])%m==0: print(s+s[d:]) return else: xx=(10**(d+l)+1)*x b=-xx%m z=eq(a,b,m) # print(k,a,xx,z) if z!=-1 and z<10**d: print(xx+z*10**l) return print(-1) for _ in range(II()):solve()