# -*- coding: utf-8 -*- """ solution for Accuracy of Integer Division Approximate Function 2 """ import math def mwf_leq(t: int, l: int, r: int, m: int, a: int, b: int, c: int, d: int) -> bool: """(max_{l <= x < r} a*x + b*floor((c*x + d)/m)) <= t""" assert l < r and 0 < m n = r - l qd0, d = divmod(c * l + d, m) sum_acc = a * l + b * qd0 - t if sum_acc > 0: return False while True: qc, c = divmod(c, m) a += b * qc qd, d = divmod(d, m) sum_acc += b * qd if sum_acc > 0: return False y_max = (c * (n - 1) + d) // m if (sum_acc + a * (n - 1) + b * y_max) > 0: return False if y_max == 0 or (a >= 0 and b >= 0) or (a <= 0 and b <= 0): return True if a < 0: sum_acc += a + b n, m, a, b, c, d = y_max, c, b, a, m, (m - d - 1) def compute_xmin(d: int, a: int, b: int, k: int) -> int: """ Compute xmin(D,A,B,K), return -1 if not exists xmin(D,A,B,K) = min{ x >= 0 | K < Δ(D,A,B,x) } Δ(D,A,B,x) = floor(x/D) - floor( floor(x/A) * floor(AB/D) / B ) """ assert d > 0 and a > 0 and b > 0 and k >= 0 gcd_da = math.gcd(d, a) d_red, a_red, t_delta = d // gcd_da, a // gcd_da, b * k m_red, r_red = divmod(a_red * b, d_red) if r_red == 0 and d_red * k + 1 >= a_red: return -1 lo, hi = 0, a_red * b * k + 2 while lo + 1 < hi: mid = (lo + hi) // 2 if mwf_leq(t_delta, lo, mid, a_red, b, -m_red, d_red, 0): lo = mid else: hi = mid return d * lo if __name__ == '__main__': import sys T = int(sys.stdin.readline()) for _ in range(T): D, A, B, K = map(int, sys.stdin.readline().split()) ans = compute_xmin(D, A, B, K) print(ans)