#include namespace { #pragma GCC diagnostic ignored "-Wunused-function" #include #pragma GCC diagnostic warning "-Wunused-function" using namespace std; using namespace atcoder; #define rep(i,n) for(int i = 0; i < (int)(n); i++) #define rrep(i,n) for(int i = (int)(n) - 1; i >= 0; i--) #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) template bool chmax(T& a, const T& b) { if (a < b) { a = b; return true; } else return false; } template bool chmin(T& a, const T& b) { if (b < a) { a = b; return true; } else return false; } using ll = long long; using P = pair; using VI = vector; using VVI = vector; using VL = vector; using VVL = vector; using mint = modint998244353; constexpr int FACT_SIZE = 1000000; mint Fact[FACT_SIZE + 1]; mint iFact[FACT_SIZE + 1]; mint inv[FACT_SIZE + 1]; const auto fact_init = [] { Fact[0] = mint::raw(1); for(int i = 1; i <= FACT_SIZE; ++i) { Fact[i] = Fact[i-1] * i; } iFact[FACT_SIZE] = Fact[FACT_SIZE].inv(); for(int i = FACT_SIZE; i; --i) { iFact[i-1] = iFact[i] * i; inv[i] = iFact[i] * Fact[i-1]; } return false; }(); mint comb(int n, int k) { if (k == 0) return mint::raw(1); assert(n >= 0 && k >= 0); if (k > n) return mint::raw(0); return Fact[n] * iFact[n - k] * iFact[k]; } mint icomb(int n, int k) { return iFact[n] * Fact[n - k] * Fact[k]; } mint fact(int n) {return Fact[n];} mint perm(int n, int k) { assert(0 <= n); return Fact[n] * iFact[n - k]; } } int main() { ios::sync_with_stdio(false); cin.tie(0); int tt; cin >> tt; while (tt--) { int n, l; cin >> n >> l; VI d(n); rep(i, n) cin >> d[i], d[i] *= 2; int a = 0; int ptr = 0; rep(i, n) { if (d[i] >= l) break; while (ptr < n && d[ptr] < d[i] + l) ptr++; a += ptr < n && d[ptr] == d[i] + l; } if (a <= 1) { mint ans; rep(i, n) ans += n * inv[n-i]; cout << ans.val() << '\n'; continue; } int b = n - 2 * a; // (1+2x)^a (1+x)^b vector f1(a + 1), f2(b + 1); mint p2 = 1; rep(i, a + 1) { f1[i] = comb(a, i) * p2; p2 *= 2; } rep(i, b + 1) f2[i] = comb(b, i); auto f = convolution(f1, f2); int sz = f.size(); mint ans; rep(i, sz) { ans += f[i] * Fact[i] * Fact[n-i] * iFact[n] * n * inv[n-i]; } // (1+2x)^(a-1) (1+x)^b rep(i, sz - 1) f[i+1] -= 2 * f[i]; rep(i, sz - 1) if (f[i].val()) { ans += a * f[i] * Fact[i+2] * Fact[n-i-2] * iFact[n] * n * inv[n-i-2]; } cout << ans.val() << '\n'; } }