#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // #pragma GCC target("avx") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") //if(a < 0 || h <= a || b < 0 || w <= b)return; using namespace std; using namespace atcoder; using ll = long long; using ld = long double; using ull = unsigned long long; using mint = modint998244353; //using mint = modint1000000007; using mint1 = modint1000000007; using VL = vector; template using pq = priority_queue;//降順?(最大取り出し) template using pqg = priority_queue, greater>;//昇順?(最小取り出し) template using vector2 = vector>; template using vector3 = vector>>; template using vector4 = vector>>>; template using vector5 = vector>>>>; template using vector6 = vector>>>>>; template using pairs = pair; #define rep(i, n) for (ll i = 0; i < ll(n); i++) #define rep1(i,n) for(int i = 1;i <= int(n);i++) #define repm(i, m, n) for (int i = (m); (i) < int(n);(i)++) #define repmr(i, m, n) for (int i = (m) - 1; (i) >= int(n);(i)--) #define rep0(i,n) for(int i = n - 1;i >= 0;i--) #define rep01(i,n) for(int i = n;i >= 1;i--) // NのK乗根N < 2^64, K <= 64 uint64_t kth_root(uint64_t N, uint64_t K) { assert(K >= 1); if (N <= 1 || K == 1) return N; if (K >= 64) return 1; if (N == uint64_t(-1)) --N; auto mul = [&](uint64_t x, uint64_t y) -> uint64_t { if (x < UINT_MAX && y < UINT_MAX) return x * y; if (x == uint64_t(-1) || y == uint64_t(-1)) return uint64_t(-1); return (x <= uint64_t(-1) / y ? x * y : uint64_t(-1)); }; auto power = [&](uint64_t x, uint64_t k) -> uint64_t { if (k == 0) return 1ULL; uint64_t res = 1ULL; while (k) { if (k & 1) res = mul(res, x); x = mul(x, x); k >>= 1; } return res; }; uint64_t res; if (K == 2) res = sqrtl(N) - 1; else if (K == 3) res = cbrt(N) - 1; else res = pow(N, nextafter(1 / double(K), 0)); while (power(res + 1, K) <= N) ++res; return res; } // ユークリッドの互除法による最大公約数算出 ll GCD(ll a,ll b){ if(b == 0)return a; return GCD(b, a % b); } //拡張ユークリッドの互除法による(ax + by = GCD(a,b))を満たすx,yの算出 pair extgcd(long long a, long long b) { if (b == 0) return make_pair(1, 0); long long x, y; tie(y, x) = extgcd(b, a % b); y -= a / b * x; return make_pair(x, y); } struct UnionFind { int n; vector parent; vector size; UnionFind(int n) : n(n), parent(n), size(n, 1) { for (int i = 0; i < n; i++) { parent[i] = i; } } int root(int x) { if (parent[x] == x) return x; return parent[x] = root(parent[x]); } bool unite(int x, int y) { x = root(x); y = root(y); if (x == y) return false; if (size[x] < size[y]) swap(x, y); parent[y] = x; size[x] += size[y]; return true; } bool same(int x, int y) { return root(x) == root(y); } }; //座標圧縮 vector Ccomp(vector a){ vector b = a; sort(b.begin(),b.end()); b.erase(unique(b.begin(),b.end()),b.end());//ダブり消去 vector rtn; rep(j,a.size()){ ll pb = lower_bound(b.begin(),b.end(),a[j]) - b.begin(); rtn.push_back(pb); } return rtn; } string abc = "abcdefghijklmnopqrstuvwxyz"; string Labc = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; ll INF = ll((1LL<<61)+1); ll mod = 998244353; ll mod1 = ll(1e9) + 7; int inf = int(1e9+10); vector movey = {-1,0,1,0,-1,-1,1,1},movex = {0,1,0,-1,-1,1,-1,1}; bool outc(ll nowy,ll nowx,ll h,ll w){ if(nowy < 0 || nowy >= h || nowx < 0 || nowx >= w){ return 0; } return 1; } vector vecfact(2,1); mint fact(ll x){ if(x >= vecfact.size()){ mint get = fact(x-1); vecfact.push_back(get * x); } return vecfact[x]; } ll maxim = 200000; vector bitprimes = {999999929,999999937,1000000021,1000000033,1000000087,1000000093,1000000097}; using mint9 = modint; ll mod9 = bitprimes[rand() % 7]; /// ここから//////////////////////////////////////////// using F = ll; using S = ll; string s; ll modPow(ll a, ll n, ll mod) { if(mod==1) return 0;ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; } void cincout(){ ios::sync_with_stdio(false); std::cin.tie(nullptr); cout<< fixed << setprecision(15); } //seg,遅延segの設定-----ここから S op(S a,S b){ return a + b; } S e(){return 0;}; S mapping (F a,S b){ return a + b; }//遅延処理 F composition (F a,F b){ return a + b; }//遅延中の枝にさらに処理 F id(){return 0;}//遅延のモノイド using ST = segtree; using LST= lazy_segtree; //segここまで signed main() { cincout(); ll t; cin >> t; rep(tt,t){ ll n; string s; cin >> n >> s; if(n == 1)cout << "B" << endl; else{ if(s[0] == 'A' && s[1] == 'B'){ ll c = 0; for(ll j = 2; j < n; j++){ if(s[j] == 'B'){ c = 1; s[j] = 'A'; } else{ if(c == 1)break; } } } s[0] = 'B',s[1] = 'B'; cout << s << endl; } } return 0; };