# input import sys input = sys.stdin.readline II = lambda : int(input()) MI = lambda : map(int, input().split()) LI = lambda : [int(a) for a in input().split()] SI = lambda : input().rstrip() LLI = lambda n : [[int(a) for a in input().split()] for _ in range(n)] LSI = lambda n : [input().rstrip() for _ in range(n)] MI_1 = lambda : map(lambda x:int(x)-1, input().split()) LI_1 = lambda : [int(a)-1 for a in input().split()] def graph(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[int]]: edge = [set() for i in range(n+1+index)] for _ in range(m): a,b = map(int, input().split()) a += index b += index edge[a].add(b) if not dir: edge[b].add(a) return edge def graph_w(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[tuple]]: edge = [set() for i in range(n+1+index)] for _ in range(m): a,b,c = map(int, input().split()) a += index b += index edge[a].add((b,c)) if not dir: edge[b].add((a,c)) return edge mod = 998244353 inf = 1001001001001001001 ordalp = lambda s : ord(s)-65 if s.isupper() else ord(s)-97 ordallalp = lambda s : ord(s)-39 if s.isupper() else ord(s)-97 yes = lambda : print("Yes") no = lambda : print("No") yn = lambda flag : print("Yes" if flag else "No") def acc(a:list[int]): sa = [0]*(len(a)+1) for i in range(len(a)): sa[i+1] = a[i] + sa[i] return sa prinf = lambda ans : print(ans if ans < 1000001001001001001 else -1) alplow = "abcdefghijklmnopqrstuvwxyz" alpup = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" alpall = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" URDL = {'U':(-1,0), 'R':(0,1), 'D':(1,0), 'L':(0,-1)} DIR_4 = [[-1,0],[0,1],[1,0],[0,-1]] DIR_8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]] DIR_BISHOP = [[-1,1],[1,1],[1,-1],[-1,-1]] prime60 = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59] sys.set_int_max_str_digits(0) sys.setrecursionlimit(10**8) # import pypyjit # pypyjit.set_param('max_unroll_recursion=-1') from collections import defaultdict,deque from heapq import heappop,heappush from bisect import bisect_left,bisect_right DD = defaultdict BSL = bisect_left BSR = bisect_right from math import gcd, lcm def inv_gcd(a, b): a = a % b if a == 0: return (b, 0) s = b t = a m0 = 0 m1 = 1 while t: u = s // t s -= t * u m0 -= m1 * u s, t = t, s m0, m1 = m1, m0 if m0 < 0: m0 += b // s return (s, m0) def inv_mod(x, m): assert 1 <= m z = inv_gcd(x, m) assert z[0] == 1 return z[1] def crt(r, m): assert len(r) == len(m) n = len(r) r0 = 0 m0 = 1 for i in range(n): assert 1 <= m[i] r1 = r[i] % m[i] m1 = m[i] if m0 < m1: r0, r1 = r1, r0 m0, m1 = m1, m0 if m0 % m1 == 0: if r0 % m1 != r1: return (0, 0) continue g, im = inv_gcd(m0, m1) u1 = m1 // g if (r1 - r0) % g: return (0, 0) x = (r1 - r0) // g % u1 * im % u1 r0 += x * m0 m0 *= u1 if r0 < 0: r0 += m0 return (r0, m0) q = II() M, R = [1] * q, [0] * q idx = 0 for i in range(q): qry = LI() if qry[0] == 1: _, m, r = qry if M[idx-1]: R[idx], M[idx] = crt((R[idx-1], r), (M[idx-1], m)) else: M[idx] = 0 idx += 1 elif qry[0] == 2: _, k = qry idx -= k else: _, m = qry # print("ans") if M[idx-1]: print(R[idx-1] % m) else: print(-1) # print(M[:idx+1]) # print(R[:idx+1])