#include using namespace std; using ll = long long; using pll = pair; #define all(a) (a).begin(), (a).end() #define pb push_back #define fi first #define se second mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count()); const ll MOD1000000007 = 1000000007; const ll MOD998244353 = 998244353; const ll MOD[3] = {999727999, 1070777777, 1000000007}; const ll LINF = 1LL << 60LL; const int IINF = (1 << 30) - 1; template class modint{ long long x; public: modint(long long x=0) : x((x%mod+mod)%mod) {} modint operator-() const { return modint(-x); } bool operator==(const modint& a) const { return x == a.x; } bool operator==(long long a) const { return x == a; } bool operator!=(const modint& a) const { return x != a.x; } bool operator!=(long long a) const { return x != a; } modint& operator+=(const modint& a) { if ((x += a.x) >= mod) x -= mod; return *this; } modint& operator-=(const modint& a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } modint& operator*=(const modint& a) { (x *= a.x) %= mod; return *this; } modint operator+(const modint& a) const { modint res(*this); return res+=a; } modint operator-(const modint& a) const { modint res(*this); return res-=a; } modint operator*(const modint& a) const { modint res(*this); return res*=a; } modint pow(long long t) const { if (!t) return 1; modint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } // for prime mod modint inv() const { return pow(mod-2); } modint& operator/=(const modint& a) { return (*this) *= a.inv(); } modint operator/(const modint& a) const { modint res(*this); return res/=a; } friend std::istream& operator>>(std::istream& is, modint& m) noexcept { is >> m.x; m.x %= mod; if (m.x < 0) m.x += mod; return is; } friend ostream& operator<<(ostream& os, const modint& m){ os << m.x; return os; } }; template struct combination{ vector fac, ifac; combination(size_t n=0) : fac(1, 1), ifac(1, 1){ make_table(n); } void make_table(size_t n){ if(fac.size()>n) return; size_t now = fac.size(); n = max(n, now*2); fac.resize(n+1); ifac.resize(n+1); for(size_t i=now; i<=n; i++) fac[i] = fac[i-1]*i; ifac[n]=T(1)/fac[n]; for(size_t i=n; i-->now; ) ifac[i] = ifac[i+1]*(i+1); } T factorial(size_t n){ make_table(n); return fac[n]; } T invfac(size_t n){ make_table(n); return ifac[n]; } T P(size_t n, size_t k){ if(n < k) return 0; make_table(n); return fac[n]*ifac[n-k]; } T C(size_t n, size_t k){ if(n < k) return 0; make_table(n); return fac[n]*ifac[n-k]*ifac[k]; } T H(size_t n, size_t k){ if(n==0) return k==0?1:0; return C(n-1+k, k); } }; using mint = modint; combination comb; template T catalans_trapezoid(int m, int n, int k){ if(k < 0){ return 0; }else if(k < m){ return comb.C(n+k, k); }else if(k < n+m){ return comb.C(n+k, k) - comb.C(n+k, k-m); }else{ return 0; } } int MAX = 202500; vector> d(MAX+1); void solve(){ int n, a; cin >> n >> a; mint ans = 0; for(int x : d[a]){ if((ll)x*(ll)(n-1) < (ll)a) continue; if(n%2 == (a/x)%2) continue; ans += catalans_trapezoid(1, (a/x)+(n-1-a/x)/2, (n-1-a/x)/2); } cout << ans << "\n"; } int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); for(int i=1; i<=MAX; i++) for(int j=i; j<=MAX; j+=i) d[j].push_back(i); int T=1; cin >> T; while(T--) solve(); }