// code template is in https://github.com/drken1215/algorithm/blob/master/template_atcoder.cpp #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include using namespace std; //------------------------------// // Utility //------------------------------// template inline bool chmax(S &a, T b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(S &a, T b) { return (a > b ? a = b, 1 : 0); } using pint = pair; using pll = pair; using tint = array; using tll = array; using fint = array; using fll = array; using qint = array; using qll = array; using sint = array; using sll = array; using vint = vector; using vll = vector; using ll = long long; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template using min_priority_queue = priority_queue, greater>; #define REP(i, a) for (long long i = 0; i < (long long)(a); i++) #define REP2(i, a, b) for (long long i = a; i < (long long)(b); i++) #define RREP(i, a) for (long long i = (a)-1; i >= (long long)(0); --i) #define RREP2(i, a, b) for (long long i = (b)-1; i >= (long long)(a); --i) #define EB emplace_back #define PB push_back #define MP make_pair #define MT make_tuple #define FI first #define SE second #define ALL(x) x.begin(), x.end() #define COUT(x) cout << #x << " = " << (x) << " (L" << __LINE__ << ")" << endl // debug stream template ostream& operator << (ostream &s, pair P) { return s << '<' << P.first << ", " << P.second << '>'; } template ostream& operator << (ostream &s, array P) { return s << '<' << P[0] << ", " << P[1] << ", " << P[2] << '>'; } template ostream& operator << (ostream &s, array P) { return s << '<' << P[0] << ", " << P[1] << ", " << P[2] << ", " << P[3] << '>'; } template ostream& operator << (ostream &s, vector P) { for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << " "; } s << P[i]; } return s; } template ostream& operator << (ostream &s, deque P) { for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << " "; } s << P[i]; } return s; } template ostream& operator << (ostream &s, vector > P) { for (int i = 0; i < P.size(); ++i) { s << endl << P[i]; } return s << endl; } template ostream& operator << (ostream &s, set P) { for (auto it : P) { s << "<" << it << "> "; } return s; } template ostream& operator << (ostream &s, multiset P) { for (auto it : P) { s << "<" << it << "> "; } return s; } template ostream& operator << (ostream &s, unordered_set P) { for (auto it : P) { s << "<" << it << "> "; } return s; } template ostream& operator << (ostream &s, map P) { for (auto it : P) { s << "<" << it.first << "->" << it.second << "> "; } return s; } template ostream& operator << (ostream &s, unordered_map P) { for (auto it : P) { s << "<" << it.first << "->" << it.second << "> "; } return s; } // 4-neighbor const vector DX = {1, 0, -1, 0}; const vector DY = {0, 1, 0, -1}; // 8-neighbor const vector DX8 = {1, 0, -1, 0, 1, -1, 1, -1}; const vector DY8 = {0, 1, 0, -1, 1, -1, -1, 1}; // num of i such that (x & (1 << i)) != 0 int popcnt(int x) { return __builtin_popcount(x); } int popcnt(unsigned int x) { return __builtin_popcount(x); } int popcnt(long long x) { return __builtin_popcountll(x); } int popcnt(unsigned long long x) { return __builtin_popcountll(x); } // min non-negative i such that (x & (1 << i)) != 0 int bsf(int x) { return __builtin_ctz(x); } int bsf(unsigned int x) { return __builtin_ctz(x); } int bsf(long long x) { return __builtin_ctzll(x); } int bsf(unsigned long long x) { return __builtin_ctzll(x); } // max non-negative i such that (x & (1 << i)) != 0 int bsr(int x) { return 8 * (int)sizeof(int) - 1 - __builtin_clz(x); } int bsr(unsigned int x) { return 8 * (int)sizeof(unsigned int) - 1 - __builtin_clz(x); } int bsr(long long x) { return 8 * (int)sizeof(long long) - 1 - __builtin_clzll(x); } int bsr(unsigned long long x) { return 8 * (int)sizeof(unsigned long long) - 1 - __builtin_clzll(x); } // floor, ceil template T floor(T a, T b) { if (a % b == 0 || a >= 0) return a / b; else return -((-a) / b) - 1; } template T ceil(T x, T y) { return floor(x + y - 1, y); } //------------------------------// // mod algorithms //------------------------------// // safe mod template constexpr T_VAL safe_mod(T_VAL a, T_MOD m) { assert(m > 0); a %= m; if (a < 0) a += m; return a; } // mod pow template constexpr T_VAL mod_pow(T_VAL a, T_VAL n, T_MOD m) { T_VAL res = 1; while (n > 0) { if (n % 2 == 1) res = res * a % m; a = a * a % m; n >>= 1; } return res; } // mod inv template constexpr T_VAL mod_inv(T_VAL a, T_MOD m) { T_VAL b = m, u = 1, v = 0; while (b > 0) { T_VAL t = a / b; a -= t * b, swap(a, b); u -= t * v, swap(u, v); } u %= m; if (u < 0) u += m; return u; } // modint template struct Fp { // inner value unsigned int val; // constructor constexpr Fp() : val(0) { } template constexpr Fp(T v) { long long tmp = (long long)(v % (long long)(get_umod())); if (tmp < 0) tmp += get_umod(); val = (unsigned int)(tmp); } template constexpr Fp(T v) { val = (unsigned int)(v % get_umod()); } constexpr long long get() const { return val; } constexpr static int get_mod() { return MOD; } constexpr static unsigned int get_umod() { return MOD; } // arithmetic operators constexpr Fp operator + () const { return Fp(*this); } constexpr Fp operator - () const { return Fp() - Fp(*this); } constexpr Fp operator + (const Fp &r) const { return Fp(*this) += r; } constexpr Fp operator - (const Fp &r) const { return Fp(*this) -= r; } constexpr Fp operator * (const Fp &r) const { return Fp(*this) *= r; } constexpr Fp operator / (const Fp &r) const { return Fp(*this) /= r; } constexpr Fp& operator += (const Fp &r) { val += r.val; if (val >= get_umod()) val -= get_umod(); return *this; } constexpr Fp& operator -= (const Fp &r) { val -= r.val; if (val >= get_umod()) val += get_umod(); return *this; } constexpr Fp& operator *= (const Fp &r) { unsigned long long tmp = val; tmp *= r.val; val = (unsigned int)(tmp % get_umod()); return *this; } constexpr Fp& operator /= (const Fp &r) { return *this = *this * r.inv(); } constexpr Fp pow(long long n) const { assert(n >= 0); Fp res(1), mul(*this); while (n) { if (n & 1) res *= mul; mul *= mul; n >>= 1; } return res; } constexpr Fp inv() const { if (PRIME) { assert(val); return pow(get_umod() - 2); } else { assert(val); return mod_inv((long long)(val), get_umod()); } } // other operators constexpr bool operator == (const Fp &r) const { return this->val == r.val; } constexpr bool operator != (const Fp &r) const { return this->val != r.val; } constexpr bool operator < (const Fp &r) const { return this->val < r.val; } constexpr bool operator > (const Fp &r) const { return this->val > r.val; } constexpr bool operator <= (const Fp &r) const { return this->val <= r.val; } constexpr bool operator >= (const Fp &r) const { return this->val >= r.val; } constexpr Fp& operator ++ () { ++val; if (val == get_umod()) val = 0; return *this; } constexpr Fp& operator -- () { if (val == 0) val = get_umod(); --val; return *this; } constexpr Fp operator ++ (int) { Fp res = *this; ++*this; return res; } constexpr Fp operator -- (int) { Fp res = *this; --*this; return res; } friend constexpr istream& operator >> (istream &is, Fp &x) { long long tmp = 1; is >> tmp; tmp = tmp % (long long)(get_umod()); if (tmp < 0) tmp += get_umod(); x.val = (unsigned int)(tmp); return is; } friend constexpr ostream& operator << (ostream &os, const Fp &x) { return os << x.val; } friend constexpr Fp pow(const Fp &r, long long n) { return r.pow(n); } friend constexpr Fp inv(const Fp &r) { return r.inv(); } }; // dynamic modint struct DynamicModint { using mint = DynamicModint; // static menber static int MOD; // inner value unsigned int val; // constructor DynamicModint() : val(0) { } template DynamicModint(T v) { long long tmp = (long long)(v % (long long)(get_umod())); if (tmp < 0) tmp += get_umod(); val = (unsigned int)(tmp); } template DynamicModint(T v) { val = (unsigned int)(v % get_umod()); } long long get() const { return val; } static int get_mod() { return MOD; } static unsigned int get_umod() { return MOD; } static void set_mod(int mod) { MOD = mod; } // arithmetic operators mint operator + () const { return mint(*this); } mint operator - () const { return mint() - mint(*this); } mint operator + (const mint &r) const { return mint(*this) += r; } mint operator - (const mint &r) const { return mint(*this) -= r; } mint operator * (const mint &r) const { return mint(*this) *= r; } mint operator / (const mint &r) const { return mint(*this) /= r; } mint& operator += (const mint &r) { val += r.val; if (val >= get_umod()) val -= get_umod(); return *this; } mint& operator -= (const mint &r) { val -= r.val; if (val >= get_umod()) val += get_umod(); return *this; } mint& operator *= (const mint &r) { unsigned long long tmp = val; tmp *= r.val; val = (unsigned int)(tmp % get_umod()); return *this; } mint& operator /= (const mint &r) { return *this = *this * r.inv(); } mint pow(long long n) const { assert(n >= 0); mint res(1), mul(*this); while (n) { if (n & 1) res *= mul; mul *= mul; n >>= 1; } return res; } mint inv() const { assert(val); return mod_inv((long long)(val), get_umod()); } // other operators bool operator == (const mint &r) const { return this->val == r.val; } bool operator != (const mint &r) const { return this->val != r.val; } bool operator < (const mint &r) const { return this->val < r.val; } bool operator > (const mint &r) const { return this->val > r.val; } bool operator <= (const mint &r) const { return this->val <= r.val; } bool operator >= (const mint &r) const { return this->val >= r.val; } mint& operator ++ () { ++val; if (val == get_umod()) val = 0; return *this; } mint& operator -- () { if (val == 0) val = get_umod(); --val; return *this; } mint operator ++ (int) { mint res = *this; ++*this; return res; } mint operator -- (int) { mint res = *this; --*this; return res; } friend istream& operator >> (istream &is, mint &x) { long long tmp = 1; is >> tmp; tmp = tmp % (long long)(get_umod()); if (tmp < 0) tmp += get_umod(); x.val = (unsigned int)(tmp); return is; } friend ostream& operator << (ostream &os, const mint &x) { return os << x.val; } friend mint pow(const mint &r, long long n) { return r.pow(n); } friend mint inv(const mint &r) { return r.inv(); } }; int DynamicModint::MOD; // Binomial coefficient template struct BiCoef { vector fact_, inv_, finv_; constexpr BiCoef() {} constexpr BiCoef(int n) : fact_(n, 1), inv_(n, 1), finv_(n, 1) { init(n); } constexpr void init(int n) { fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1); int MOD = fact_[0].get_mod(); for(int i = 2; i < n; i++){ fact_[i] = fact_[i-1] * i; inv_[i] = -inv_[MOD%i] * (MOD/i); finv_[i] = finv_[i-1] * inv_[i]; } } constexpr mint com(int n, int k) const { if (n < k || n < 0 || k < 0) return 0; return fact_[n] * finv_[k] * finv_[n-k]; } constexpr mint fact(int n) const { if (n < 0) return 0; return fact_[n]; } constexpr mint inv(int n) const { if (n < 0) return 0; return inv_[n]; } constexpr mint finv(int n) const { if (n < 0) return 0; return finv_[n]; } }; // all inverse template vector all_inverse(const vector &v) { for (auto &&vi : v) assert(vi != mint(0)); int N = (int)v.size(); vector res(N + 1, mint(1)); for (int i = 0; i < N; i++) res[i + 1] = res[i] * v[i]; mint t = res.back().inv(); res.pop_back(); for (int i = N - 1; i >= 0; i--) res[i] *= t, t *= v[i]; return res; } // Garner's algorithm // for each step, we solve "coeffs[k] * t[k] + constants[k] = b[k] (mod. m[k])" // coeffs[k] = m[0]m[1]...m[k-1] // constants[k] = t[0] + t[1]m[0] + ... + t[k-1]m[0]m[1]...m[k-2] // if m is not coprime, call this function first template bool preGarner(vector &b, vector &m) { assert(b.size() == m.size()); T_VAL res = 1; for (int i = 0; i < (int)b.size(); i++) { for (int j = 0; j < i; ++j) { T_VAL g = gcd(m[i], m[j]); if ((b[i] - b[j]) % g != 0) return false; m[i] /= g, m[j] /= g; T_VAL gi = gcd(m[i], g), gj = g/gi; do { g = gcd(gi, gj); gi *= g, gj /= g; } while (g != 1); m[i] *= gi, m[j] *= gj; b[i] %= m[i], b[j] %= m[j]; } } vector b2, m2; for (int i = 0; i < (int)b.size(); i++) { if (m[i] == 1) continue; b2.emplace_back(b[i]), m2.emplace_back(m[i]); } b = b2, m = m2; return true; } // find x (%MOD), LCM (%MOD) (m must be coprime) template T_VAL Garner(vector b, vector m) { assert(b.size() == m.size()); using mint = DynamicModint; int num = (int)m.size(); T_VAL res = 0, lcm = 1; vector coeffs(num, 1), constants(num, 0); for (int k = 0; k < num; k++) { mint::set_mod(m[k]); T_VAL t = ((mint(b[k]) - constants[k]) / coeffs[k]).val; for (int i = k + 1; i < num; i++) { constants[i] = safe_mod(constants[i] + t * coeffs[i], m[i]); coeffs[i] = safe_mod(coeffs[i] * m[k], m[i]); } res += t * lcm; lcm *= m[k]; } return res; } // find x, LCM (m must be coprime) template T_VAL Garner(vector b, vector m, T_MOD MOD) { assert(b.size() == m.size()); assert(MOD > 0); using mint = DynamicModint; int num = (int)m.size(); T_VAL res = 0, lcm = 1; vector coeffs(num, 1), constants(num, 0); for (int k = 0; k < num; k++) { mint::set_mod(m[k]); T_VAL t = ((mint(b[k]) - constants[k]) / coeffs[k]).val; for (int i = k + 1; i < num; i++) { constants[i] = safe_mod(constants[i] + t * coeffs[i], m[i]); coeffs[i] = safe_mod(coeffs[i] * m[k], m[i]); } res = safe_mod(res + t * lcm, MOD); lcm = safe_mod(lcm * m[k], MOD); } return res; } //------------------------------// // NTT //------------------------------// // min non-negative i such that n <= 2^i int ceil_pow2(int n) { int i = 0; while ((1U << i) < (unsigned int)(n)) i++; return i; } // calc primitive root constexpr int calc_primitive_root(long long m) { if (m == 1) return -1; if (m == 2) return 1; if (m == 998244353) return 3; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 645922817) return 3; if (m == 897581057) return 3; long long divs[20] = {}; divs[0] = 2; long long cnt = 1; long long x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (long long i = 3; i * i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) x /= i; } } if (x > 1) divs[cnt++] = x; for (long long g = 2; ; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (mod_pow(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } // NTT setup template struct ntt_setup { static constexpr int bsf_constexpr(unsigned int x) { int i = 0; while (!(x & (1 << i))) i++; return i; }; static constexpr int rank = bsf_constexpr(MOD - 1); array root, iroot; // root[i]^(2^i) = 1, root[i] * iroot[i] = 1 array rate2, irate2; array rate3, irate3; ntt_setup() { root[rank] = mint(g).pow((MOD - 1) >> rank); iroot[rank] = root[rank].inv(); for (int i = rank - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } mint prod = 1, iprod = 1; for (int i = 0; i < rank - 1; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } prod = 1, iprod = 1; for (int i = 0; i < rank - 2; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } }; // NTT transformation template void ntt_trans(vector &v) { int n = (int)v.size(); int h = ceil_pow2(n); static const ntt_setup setup; int len = 0; while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); mint rot = 1; for (int s = 0; s < (1 << len); s++) { int offset = s << (h - len); for (int i = 0; i < p; i++) { auto l = v[i + offset]; auto r = v[i + offset + p] * rot; v[i + offset] = l + r; v[i + offset + p] = l - r; } if (s + 1 != (1 << len)) { rot *= setup.rate2[bsf(~(unsigned int)(s))]; } } len++; } else { int p = 1 << (h - len - 2); mint rot = 1, imag = setup.root[2]; for (int s = 0; s < (1 << len); s++) { mint rot2 = rot * rot, rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { auto mod2 = 1ULL * MOD * MOD; auto a0 = 1ULL * v[i + offset].val; auto a1 = 1ULL * v[i + offset + p].val * rot.val; auto a2 = 1ULL * v[i + offset + p * 2].val * rot2.val; auto a3 = 1ULL * v[i + offset + p * 3].val * rot3.val; auto tmp = 1ULL * mint(a1 + mod2 - a3).val * imag.val; auto na2 = mod2 - a2; v[i + offset] = a0 + a2 + a1 + a3; v[i + offset + p] = a0 + a2 + (mod2 * 2 - (a1 + a3)); v[i + offset + p * 2] = a0 + na2 + tmp; v[i + offset + p * 3] = a0 + na2 + (mod2 - tmp); } if (s + 1 != (1 << len)) { rot *= setup.rate3[bsf(~(unsigned int)(s))]; } } len += 2; } } } // NTT inv-transformation template void ntt_trans_inv(vector &v) { int n = (int)v.size(); int h = ceil_pow2(n); static const ntt_setup setup; int len = h; while (len) { if (len == 1) { int p = 1 << (h - len); mint irot = 1; for (int s = 0; s < (1 << (len - 1)); s++) { int offset = s << (h - len + 1); for (int i = 0; i < p; i++) { auto l = v[i + offset]; auto r = v[i + offset + p]; v[i + offset] = l + r; v[i + offset + p] = (unsigned long long)((long long)(MOD) + l.val - r.val) * irot.val; } if (s + 1 != (1 << (len - 1))) { irot *= setup.irate2[bsf(~(unsigned int)(s))]; } } len--; } else { int p = 1 << (h - len); mint irot = 1, iimag = setup.iroot[2]; for (int s = 0; s < (1 << (len - 2)); s++) { mint irot2 = irot * irot, irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { auto a0 = 1ULL * v[i + offset].val; auto a1 = 1ULL * v[i + offset + p].val; auto a2 = 1ULL * v[i + offset + p * 2].val; auto a3 = 1ULL * v[i + offset + p * 3].val; auto tmp = 1ULL * mint((MOD + a2 - a3) * iimag.val).val; v[i + offset] = a0 + a1 + a2 + a3; v[i + offset + p] = (a0 + (MOD - a1) + tmp) * irot.val; v[i + offset + p * 2] = (a0 + a1 + (MOD - a2) + (MOD - a3)) * irot2.val; v[i + offset + p * 3] = (a0 + (MOD - a1) + (MOD - tmp)) * irot3.val; } if (s + 1 != (1 << (len - 2))) { irot *= setup.irate3[bsf(~(unsigned int)(s))]; } } len -= 2; } } mint in = mint(n).inv(); for (int i = 0; i < n; i++) v[i] *= in; } // naive convolution template vector sub_convolution_naive(const vector &a, const vector &b) { int n = (int)a.size(), m = (int)b.size(); if (!n || !m) return {}; vector res(n + m - 1); if (n < m) { for (int j = 0; j < m; j++) for (int i = 0; i < n; i++) res[i + j] += a[i] * b[j]; } else { for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) res[i + j] += a[i] * b[j]; } return res; } // ntt convolution template vector sub_convolution_ntt(vector a, vector b) { int MOD = mint::get_mod(); int n = (int)a.size(), m = (int)b.size(); if (!n || !m) return {}; int z = (int)bit_ceil((unsigned int)(n + m - 1)); assert((MOD - 1) % z == 0); a.resize(z), b.resize(z); ntt_trans(a), ntt_trans(b); for (int i = 0; i < z; i++) a[i] *= b[i]; ntt_trans_inv(a); a.resize(n + m - 1); return a; } // convolution in general mod template vector convolution(const vector &a, const vector &b) { int n = (int)a.size(), m = (int)b.size(); if (!n || !m) return {}; if (min(n, m) <= 60) return sub_convolution_naive(std::move(a), std::move(b)); if constexpr (std::is_same_v>) return sub_convolution_ntt(a, b); static constexpr int MOD0 = 754974721; // 2^24 static constexpr int MOD1 = 167772161; // 2^25 static constexpr int MOD2 = 469762049; // 2^26 using mint0 = Fp; using mint1 = Fp; using mint2 = Fp; static const mint1 imod0 = 95869806; // modinv(MOD0, MOD1); static const mint2 imod1 = 104391568; // modinv(MOD1, MOD2); static const mint2 imod01 = 187290749; // imod1 / MOD0; vector a0(n, 0), b0(m, 0); vector a1(n, 0), b1(m, 0); vector a2(n, 0), b2(m, 0); for (int i = 0; i < n; ++i) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val; for (int i = 0; i < m; ++i) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val; auto c0 = sub_convolution_ntt(std::move(a0), std::move(b0)); auto c1 = sub_convolution_ntt(std::move(a1), std::move(b1)); auto c2 = sub_convolution_ntt(std::move(a2), std::move(b2)); vector res(n + m - 1); mint mod0 = MOD0, mod01 = mod0 * MOD1; for (int i = 0; i < n + m - 1; ++i) { unsigned int y0 = c0[i].val; unsigned int y1 = (imod0 * (c1[i] - y0)).val; unsigned int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val; res[i] = mod01 * y2 + mod0 * y1 + y0; } return res; } // convolution long long (especially, mod 2^64) vector convolution_ull(const vector &a, const vector &b) { int n = (int)a.size(), m = (int)b.size(); if (!n || !m) return {}; if (min(n, m) <= 60) return sub_convolution_naive(std::move(a), std::move(b)); static constexpr int MOD0 = 754974721; // 2^24 static constexpr int MOD1 = 167772161; // 2^25 static constexpr int MOD2 = 469762049; // 2^26 static constexpr int MOD3 = 998244353; // 2^23 static constexpr int MOD4 = 645922817; // 2^23 static constexpr int MOD5 = 897581057; // 2^23 using mint0 = Fp; using mint1 = Fp; using mint2 = Fp; using mint3 = Fp; using mint4 = Fp; using mint5 = Fp; vector a0(n, 0), b0(m, 0); vector a1(n, 0), b1(m, 0); vector a2(n, 0), b2(m, 0); vector a3(n, 0), b3(m, 0); vector a4(n, 0), b4(m, 0); vector a5(n, 0), b5(m, 0); for (int i = 0; i < n; ++i) { a0[i] = a[i] % MOD0; a1[i] = a[i] % MOD1; a2[i] = a[i] % MOD2; a3[i] = a[i] % MOD3; a4[i] = a[i] % MOD4; a5[i] = a[i] % MOD5; } for (int i = 0; i < m; ++i) { b0[i] = b[i] % MOD0; b1[i] = b[i] % MOD1; b2[i] = b[i] % MOD2; b3[i] = b[i] % MOD3; b4[i] = b[i] % MOD4; b5[i] = b[i] % MOD5; } auto c0 = sub_convolution_ntt(std::move(a0), std::move(b0)); auto c1 = sub_convolution_ntt(std::move(a1), std::move(b1)); auto c2 = sub_convolution_ntt(std::move(a2), std::move(b2)); auto c3 = sub_convolution_ntt(std::move(a3), std::move(b3)); auto c4 = sub_convolution_ntt(std::move(a4), std::move(b4)); auto c5 = sub_convolution_ntt(std::move(a5), std::move(b5)); vector res(n + m - 1); for (int i = 0; i < n + m - 1; i++) { vector rems = {c0[i].val, c1[i].val, c2[i].val, c3[i].val, c4[i].val, c5[i].val}; vector mods = {MOD0, MOD1, MOD2, MOD3, MOD4, MOD5}; res[i] = Garner(rems, mods); } return res; } //------------------------------// // FPS //------------------------------// // mod sqrt template T_VAL mod_sqrt(T_VAL a, T_MOD p) { a = safe_mod(a, p); if (a <= 1) return a; using mint = DynamicModint; mint::set_mod(p); if (mint(a).pow((p - 1) >> 1) != 1) return T_VAL(-1); mint b = 1, one = 1; while (b.pow((p - 1) >> 1) == 1) b++; T_VAL m = p - 1, e = 0; while (m % 2 == 0) m >>= 1, e++; mint x = mint(a).pow((m - 1) >> 1); mint y = mint(a) * x * x; x *= a; mint z = mint(b).pow(m); while (y != 1) { T_VAL j = 0; mint t = y; while (t != one) { j++; t *= t; } z = z.pow(T_VAL(1) << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } T_VAL res = x.val; if (res * 2 > p) res = p - res; return res; } // Formal Power Series template struct FPS : vector { static const int SPARSE_BOARDER = 60; using vector::vector; // constructor constexpr FPS(const vector &r) : vector(r) {} // core operator constexpr FPS pre(int siz) const { return FPS(begin(*this), begin(*this) + min((int)this->size(), siz)); } constexpr FPS rev() const { FPS res = *this; reverse(begin(res), end(res)); return res; } constexpr FPS& normalize() { while (!this->empty() && this->back() == 0) this->pop_back(); return *this; } constexpr mint eval(const mint &v) const { mint res = 0; for (int i = (int)this->size()-1; i >= 0; --i) { res *= v; res += (*this)[i]; } return res; } constexpr int count_terms() const { int res = 0; for (int i = 0; i < (int)this->size(); i++) if ((*this)[i] != mint(0)) res++; return res; } // basic operator constexpr FPS operator - () const noexcept { FPS res = (*this); for (int i = 0; i < (int)res.size(); ++i) res[i] = -res[i]; return res; } constexpr FPS operator + (const mint &v) const { return FPS(*this) += v; } constexpr FPS operator + (const FPS &r) const { return FPS(*this) += r; } constexpr FPS operator - (const mint &v) const { return FPS(*this) -= v; } constexpr FPS operator - (const FPS &r) const { return FPS(*this) -= r; } constexpr FPS operator * (const mint &v) const { return FPS(*this) *= v; } constexpr FPS operator * (const FPS &r) const { return FPS(*this) *= r; } constexpr FPS operator / (const mint &v) const { return FPS(*this) /= v; } constexpr FPS operator / (const FPS &r) const { return FPS(*this) /= r; } constexpr FPS operator % (const FPS &r) const { return FPS(*this) %= r; } constexpr FPS operator << (int x) const { return FPS(*this) <<= x; } constexpr FPS operator >> (int x) const { return FPS(*this) >>= x; } constexpr FPS& operator += (const mint &v) { if (this->empty()) this->reserve(1), this->resize(1); (*this)[0] += v; return *this; } constexpr FPS& operator += (const FPS &r) { if (r.size() > this->size()) this->reserve(r.size()), this->resize(r.size()); for (int i = 0; i < (int)r.size(); ++i) (*this)[i] += r[i]; return this->normalize(); } constexpr FPS& operator -= (const mint &v) { if (this->empty()) this->reserve(1), this->resize(1); (*this)[0] -= v; return *this; } constexpr FPS& operator -= (const FPS &r) { if (r.size() > this->size()) this->reserve(r.size()), this->resize(r.size()); for (int i = 0; i < (int)r.size(); ++i) (*this)[i] -= r[i]; return this->normalize(); } constexpr FPS& operator *= (const mint &v) { for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= v; return *this; } constexpr FPS& operator *= (const FPS &r) { return *this = convolution((*this), r); } constexpr FPS& operator /= (const mint &v) { assert(v != 0); mint iv = v.inv(); for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= iv; return *this; } // division, r must be normalized (r.back() must not be 0) constexpr FPS& operator /= (const FPS &r) { assert(!r.empty()); assert(r.back() != 0); this->normalize(); if (this->size() < r.size()) { this->clear(); return *this; } int need = (int)this->size() - (int)r.size() + 1; *this = (rev().pre(need) * r.rev().inv(need)).pre(need).rev(); return *this; } constexpr FPS& operator %= (const FPS &r) { assert(!r.empty()); assert(r.back() != 0); this->normalize(); FPS q = (*this) / r; return *this -= q * r; } constexpr FPS& operator <<= (int x) { FPS res(x, 0); res.insert(res.end(), begin(*this), end(*this)); return *this = res; } constexpr FPS& operator >>= (int x) { FPS res; res.insert(res.end(), begin(*this) + x, end(*this)); return *this = res; } // advanced operation // df/dx constexpr FPS diff() const { int n = (int)this->size(); if (n <= 0) return FPS(); FPS res(n-1); for (int i = 1; i < n; ++i) res[i-1] = (*this)[i] * i; return res; } // \int f dx constexpr FPS integral() const { int n = (int)this->size(); FPS res(n+1, 0); for (int i = 0; i < n; ++i) res[i+1] = (*this)[i] / (i+1); return res; } // inv(f), f[0] must not be 0 constexpr FPS inv(int deg = -1) const { if (count_terms() <= SPARSE_BOARDER) return inv_sparse(deg); if constexpr (std::is_same_v>) return inv_ntt_friendly(deg); assert(this->size() >= 1 && (*this)[0] != 0); if (deg < 0) deg = (int)this->size(); FPS res({mint(1) / (*this)[0]}); for (int d = 1; d < deg; d <<= 1) { res = (res + res - res * res * pre(d << 1)).pre(d << 1); } res.resize(deg); return res; } constexpr FPS inv_ntt_friendly(int deg = -1) const { assert(this->size() >= 1 && (*this)[0] != 0); if (deg < 0) deg = (int)this->size(); FPS res(deg); res[0] = mint(1) / (*this)[0]; for (int d = 1; d < deg; d <<= 1) { FPS g(d * 2), h(d * 2); mint iv = mint(d * 2).inv(); for (int i = 0; i < min((int)this->size(), d * 2); i++) g[i] = (*this)[i]; for (int i = 0; i < d; i++) h[i] = res[i]; ntt_trans(g), ntt_trans(h); for (int i = 0; i < d * 2; i++) g[i] *= h[i]; ntt_trans_inv(g); for (int i = 0; i < d; i++) g[i] = 0; ntt_trans(g); for (int i = 0; i < d * 2; i++) g[i] *= h[i]; ntt_trans_inv(g); for (int i = d; i < min(deg, d * 2); i++) res[i] = -g[i]; } return res.pre(deg); } constexpr FPS inv_sparse(int deg = -1) const { assert(this->size() >= 1 && (*this)[0] != 0); if (deg < 0) deg = (int)this->size(); vector> dat; for (int i = 1; i < (int)this->size(); i++) if ((*this)[i] != mint(0)) { dat.emplace_back(i, (*this)[i]); } vector res(deg); res[0] = (*this)[0].inv(); for (int i = 1; i < deg; i++) { mint r = 0; for (auto &&[k, val] : dat) { if (k > i) break; r -= val * res[i - k]; } res[i] = r * res[0]; } return res; } // log(f) = \int f'/f dx, f[0] must be 1 constexpr FPS log(int deg = -1) const { assert(this->size() >= 1 && (*this)[0] == 1); if (count_terms() <= SPARSE_BOARDER) return log_sparse(deg); if (deg < 0) deg = (int)this->size(); return ((diff() * inv(deg)).pre(deg - 1)).integral(); } constexpr FPS log_sparse(int deg = -1) const { assert(this->size() >= 1 && (*this)[0] == 1); if (deg < 0) deg = (int)this->size(); vector> dat; for (int i = 1; i < (int)this->size(); i++) if ((*this)[i] != mint(0)) { dat.emplace_back(i, (*this)[i]); } BiCoef bc(deg); vector res(deg), tmp(deg); for (int i = 0; i < deg - 1; i++) { mint r = mint(i + 1) * (*this)[i + 1]; for (auto &&[k, val] : dat) { if (k > i) break; r -= val * tmp[i - k]; } tmp[i] = r; res[i + 1] = r * bc.inv(i + 1); } return res; } // exp(f), f[0] must be 0 constexpr FPS exp(int deg = -1) const { if ((int)this->size() == 0) return {mint(1)}; if (count_terms() <= SPARSE_BOARDER) return exp_sparse(deg); if constexpr (std::is_same_v>) return exp_ntt_friendly(deg); assert((*this)[0] == 0); if (deg < 0) deg = (int)this->size(); FPS res(1, 1); for (int d = 1; d < deg; d <<= 1) { res = res * (pre(d << 1) - res.log(d << 1) + 1).pre(d << 1); } res.resize(deg); return res; } constexpr FPS exp_ntt_friendly(int deg = -1) const { if ((int)this->size() == 0) return {mint(1)}; assert((*this)[0] == 0); if (deg < 0) deg = (int)this->size(); FPS fiv; fiv.reserve(deg + 1); fiv.emplace_back(mint(0)); fiv.emplace_back(mint(1)); auto inplace_integral = [&](FPS &F) -> void { const int n = (int)F.size(); auto mod = mint::get_mod(); while ((int)fiv.size() <= n) { int i = fiv.size(); fiv.emplace_back((-fiv[mod % i]) * (mod / i)); } F.insert(begin(F), mint(0)); for (int i = 1; i <= n; i++) F[i] *= fiv[i]; }; auto inplace_diff = [](FPS &F) -> void { if (F.empty()) return; F.erase(begin(F)); mint coef = 1; for (int i = 0; i < (int)F.size(); i++) { F[i] *= coef; coef++; } }; FPS b{1, (1 < (int)this->size() ? (*this)[1] : 0)}, c{1}, z1, z2{1, 1}; for (int m = 2; m < deg; m <<= 1) { auto y = b; y.resize(m * 2); ntt_trans(y); z1 = z2; FPS z(m); for (int i = 0; i < m; i++) z[i] = y[i] * z1[i]; ntt_trans_inv(z); fill(begin(z), begin(z) + m / 2, mint(0)); ntt_trans(z); for (int i = 0; i < m; i++) z[i] *= -z1[i]; ntt_trans_inv(z); c.insert(end(c), begin(z) + m / 2, end(z)); z2 = c; z2.resize(m * 2); ntt_trans(z2); FPS x(begin(*this), begin(*this) + min((int)this->size(), m)); inplace_diff(x); x.emplace_back(mint(0)); ntt_trans(x); for (int i = 0; i < m; i++) x[i] *= y[i]; ntt_trans_inv(x); x -= b.diff(); x.resize(m * 2); for (int i = 0; i < m - 1; i++) x[m + i] = x[i], x[i] = mint(0); ntt_trans(x); for (int i = 0; i < m * 2; i++) x[i] *= z2[i]; ntt_trans_inv(x); x.pop_back(); inplace_integral(x); for (int i = m; i < min((int)this->size(), m * 2); i++) x[i] += (*this)[i]; fill(begin(x), begin(x) + m, mint(0)); ntt_trans(x); for (int i = 0; i < m * 2; i++) x[i] *= y[i]; ntt_trans_inv(x); b.insert(end(b), begin(x) + m, end(x)); } return FPS(begin(b), begin(b) + deg); } constexpr FPS exp_sparse(int deg = -1) const { if ((int)this->size() == 0) return {mint(1)}; assert((*this)[0] == 0); if (deg < 0) deg = (int)this->size(); vector> dat; for (int i = 1; i < (int)this->size(); i++) if ((*this)[i] != mint(0)) { dat.emplace_back(i - 1, (*this)[i] * i); } BiCoef bc(deg); vector res(deg); res[0] = 1; for (int i = 1; i < deg; i++) { mint r = 0; for (auto &&[k, val] : dat) { if (k > i - 1) break; r += val * res[i - k - 1]; } res[i] = r * bc.inv(i); } return res; } // pow(f) = exp(e * log f) constexpr FPS pow(long long e, int deg = -1) const { if (count_terms() <= SPARSE_BOARDER) return pow_sparse(e, deg); assert(e >= 0); if (deg < 0) deg = (int)this->size(); if (deg == 0) return FPS(); if (e == 0) { FPS res(deg, 0); res[0] = 1; return res; } long long ord = 0; while (ord < (int)this->size() && (*this)[ord] == 0) ord++; if (ord == (int)this->size() || ord > (deg - 1) / e) return FPS(deg, 0); mint k = (*this)[ord]; FPS res = ((((*this) >> ord) / k).log(deg) * e).exp(deg) * mint(k).pow(e) << (e * ord); res.resize(deg); return res; } constexpr FPS pow_sparse(long long e, int deg = -1) const { assert(e >= 0); if (deg < 0) deg = (int)this->size(); if (deg == 0) return FPS(); if (e == 0) { FPS res(deg, 0); res[0] = 1; return res; } long long ord = 0; while (ord < (int)this->size() && (*this)[ord] == 0) ord++; if (ord == (int)this->size() || ord > (deg - 1) / e) return FPS(deg, 0); if ((*this)[0] == 1) return pow_sparse_constant1(e, deg); auto f = (*this); rotate(f.begin(), f.begin() + ord, f.end()); mint con = f[0], icon = f[0].inv(); for (int i = 0; i < deg; i++) f[i] *= icon; auto res = f.pow_sparse_constant1(e, deg); int ord2 = e * ord; rotate(res.begin(), res.begin() + (deg - ord2), res.end()); fill(res.begin(), res.begin() + ord2, mint(0)); mint pw = con.pow(e); for (int i = ord2; i < deg; i++) res[i] *= pw; return res; } constexpr FPS pow_sparse_constant1(mint e, int deg = -1) const { assert((int)this->size() > 0 && (*this)[0] == 1); if (deg < 0) deg = (int)this->size(); vector> dat; for (int i = 1; i < (int)this->size(); i++) if ((*this)[i] != mint(0)) { dat.emplace_back(i, (*this)[i]); } BiCoef bc(deg); vector res(deg); res[0] = 1; for (int i = 0; i < deg - 1; i++) { mint &r = res[i + 1]; for (auto &&[k, val] : dat) { if (k > i + 1) break; mint t = val * res[i - k + 1]; r += t * (mint(k) * e - mint(i - k + 1)); } r *= bc.inv(i + 1); } return res; } // sqrt(f) constexpr FPS sqrt(int deg = -1) const { if (count_terms() <= SPARSE_BOARDER) return sqrt_sparse(deg); if (deg < 0) deg = (int)this->size(); if ((int)this->size() == 0) return FPS(deg, 0); if ((*this)[0] == mint(0)) { for (int i = 1; i < (int)this->size(); i++) { if ((*this)[i] != mint(0)) { if (i & 1) return FPS(); if (deg - i / 2 <= 0) return FPS(deg, 0); auto res = ((*this) >> i).sqrt(deg - i / 2); if (res.empty()) return FPS(); res = res << (i / 2); if ((int)res.size() < deg) res.resize(deg, mint(0)); return res; } } return FPS(deg, 0); } long long sqr = mod_sqrt((*this)[0].val, mint::get_mod()); if (sqr == -1) return FPS(); assert((*this)[0].val == sqr * sqr % mint::get_mod()); FPS res = {mint(sqr)}; mint iv2 = mint(2).inv(); for (int d = 1; d < deg; d <<= 1) { res = (res + pre(d << 1) * res.inv(d << 1)).pre(d << 1) * iv2; } res.resize(deg); return res; } constexpr FPS sqrt_sparse(int deg) const { if (deg < 0) deg = (int)this->size(); if ((int)this->size() == 0) return FPS(deg, 0); if ((*this)[0] == mint(0)) { for (int i = 1; i < (int)this->size(); i++) { if ((*this)[i] != mint(0)) { if (i & 1) return FPS(); if (deg - i / 2 <= 0) return FPS(deg, 0); auto res = ((*this) >> i).sqrt_sparse(deg - i / 2); if (res.empty()) return FPS(); res = res << (i / 2); if ((int)res.size() < deg) res.resize(deg, mint(0)); return res; } } return FPS(deg, 0); } mint con = (*this)[0], icon = con.inv(); long long sqr = mod_sqrt(con.val, mint::get_mod()); if (sqr == -1) return FPS(); assert(con.val == sqr * sqr % mint::get_mod()); auto res = (*this) * icon; return res.sqrt_sparse_constant1(deg) * sqr; } constexpr FPS sqrt_sparse_constant1(int deg) const { return pow_sparse_constant1(mint(2).inv(), deg); } // polynomial taylor shift constexpr FPS taylor_shift(long long c) const { int N = (int)this->size() - 1; BiCoef bc(N + 1); FPS p(N + 1), q(N + 1); for (int i = 0; i <= N; i++) { p[i] = (*this)[i] * bc.fact(i); q[N - i] = mint(c).pow(i) * bc.finv(i); } FPS pq = p * q; FPS res(N + 1); for (int i = 0; i <= N; i++) res[i] = pq[i + N] * bc.finv(i); return res; } // friend operators friend constexpr FPS diff(const FPS &f) { return f.diff(); } friend constexpr FPS integral(const FPS &f) { return f.integral(); } friend constexpr FPS inv(const FPS &f, int deg = -1) { return f.inv(deg); } friend constexpr FPS log(const FPS &f, int deg = -1) { return f.log(deg); } friend constexpr FPS exp(const FPS &f, int deg = -1) { return f.exp(deg); } friend constexpr FPS pow(const FPS &f, long long e, int deg = -1) { return f.pow(e, deg); } friend constexpr FPS sqrt(const FPS &f, int deg = -1) { return f.sqrt(deg); } friend constexpr FPS taylor_shift(const FPS &f, long long c) { return f.taylor_shift(c); } }; // Bostan-Mori // find [x^N] P(x)/Q(x), O(K log K log N) // deg(Q(x)) = K, deg(P(x)) < K template mint BostanMori(const FPS &P, const FPS &Q, long long N) { assert(!P.empty() && !Q.empty()); if (N == 0 || Q.size() == 1) return P[0] / Q[0]; int qdeg = (int)Q.size(); FPS P2{P}, minusQ{Q}; P2.resize(qdeg - 1); for (int i = 1; i < (int)Q.size(); i += 2) minusQ[i] = -minusQ[i]; P2 *= minusQ; FPS Q2 = Q * minusQ; FPS S(qdeg - 1), T(qdeg); for (int i = 0; i < (int)S.size(); ++i) { S[i] = (N % 2 == 0 ? P2[i * 2] : P2[i * 2 + 1]); } for (int i = 0; i < (int)T.size(); ++i) { T[i] = Q2[i * 2]; } return BostanMori(S, T, N >> 1); } // find x[K] of linearly D-recurrent sequence, O(D log D log K) // x[0] = A[0], x[1] = A[1], ..., x[D-1] = A[D-1] // x[i] = C[0]x[i-1] + C[1]x[i-2] + ... + C[D-1]x[i-D] template mint kth_term(const vector &A, const vector &C, long long K) { assert(A.size() == C.size()); int D = (int)C.size(); FPS Q(D+1); Q[0] = 1; for (int i = 1; i <= D; i++) Q[i] = -C[i-1]; FPS P = (Q * FPS(A)).pre(D); return BostanMori(P, Q, K); // F(x) = P(x) / Q(x), where F(x) is generating function } int main() { const int MOD = 1234567891; using mint = Fp; ll N, M; cin >> N >> M; vector A(N); REP(i, N) cin >> A[i]; FPS P({mint(1)}); FPS Q({mint(1)}); REP(i, N) { FPS t(A[i]+1, mint(0)); t[0] = 1, t[A[i]] = -1; Q *= t; } auto res = BostanMori(P, Q, M); cout << res << endl; }