#include #include #include #include #include #include #include #include #include #include // credit atcoder #include #include #include #include #include /* g++ -std=c++23 -O2 -Wall -Wextra A.cpp -o A ./A < input.in > output.out */ // credit atcoder // https://github.com/atcoder/ac-library/blob/master/document_en/mincostflow.md namespace internal { template struct simple_queue { std::vector payload; int pos = 0; void reserve(int n) { payload.reserve(n); } int size() const { return int(payload.size()) - pos; } bool empty() const { return pos == int(payload.size()); } void push(const T& t) { payload.push_back(t); } T& front() { return payload[pos]; } void clear() { payload.clear(); pos = 0; } void pop() { pos++; } }; } // namespace internal template struct mf_graph { public: mf_graph() : _n(0) {} mf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); assert(0 <= cap); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); g[from].push_back(_edge{to, int(g[to].size()), cap}); g[to].push_back(_edge{from, int(g[from].size()) - 1, 0}); return m; } struct edge { int from, to; Cap cap, flow; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap}; } std::vector edges() { int m = int(pos.size()); std::vector result; for (int i = 0; i < m; i++) { result.push_back(get_edge(i)); } return result; } void change_edge(int i, Cap new_cap, Cap new_flow) { int m = int(pos.size()); assert(0 <= i && i < m); assert(0 <= new_flow && new_flow <= new_cap); auto& _e = g[pos[i].first][pos[i].second]; auto& _re = g[_e.to][_e.rev]; _e.cap = new_cap - new_flow; _re.cap = new_flow; } Cap flow(int s, int t) { return flow(s, t, std::numeric_limits::max()); } Cap flow(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); std::vector level(_n), iter(_n); internal::simple_queue que; auto bfs = [&]() { std::fill(level.begin(), level.end(), -1); level[s] = 0; que.clear(); que.push(s); while (!que.empty()) { int v = que.front(); que.pop(); for (auto e : g[v]) { if (e.cap == 0 || level[e.to] >= 0) continue; level[e.to] = level[v] + 1; if (e.to == t) return; que.push(e.to); } } }; auto dfs = [&](auto self, int v, Cap up) { if (v == s) return up; Cap res = 0; int level_v = level[v]; for (int& i = iter[v]; i < int(g[v].size()); i++) { _edge& e = g[v][i]; if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue; Cap d = self(self, e.to, std::min(up - res, g[e.to][e.rev].cap)); if (d <= 0) continue; g[v][i].cap += d; g[e.to][e.rev].cap -= d; res += d; if (res == up) break; } return res; }; Cap flow = 0; while (flow < flow_limit) { bfs(); if (level[t] == -1) break; std::fill(iter.begin(), iter.end(), 0); while (flow < flow_limit) { Cap f = dfs(dfs, t, flow_limit - flow); if (!f) break; flow += f; } } return flow; } std::vector min_cut(int s) { std::vector visited(_n); internal::simple_queue que; que.push(s); while (!que.empty()) { int p = que.front(); que.pop(); visited[p] = true; for (auto e : g[p]) { if (e.cap && !visited[e.to]) { visited[e.to] = true; que.push(e.to); } } } return visited; } private: int _n; struct _edge { int to, rev; Cap cap; }; std::vector> pos; std::vector> g; }; template struct Dijkstra { using edge = std::pair; // weight & vertex id num const T INF = std::numeric_limits::max() / 2; int n; std::vector> edges; Dijkstra(int _n) : n(_n), edges(n) {} // Add a directed edge from u -> v; void add_edge(int u, int v, T weight) { edges[u].emplace_back(weight, v); } // return dist [0..n - 1] pred[0..n - 1] std::pair, std::vector> shortest_paths(int s) { std::vector dist(n, INF); std::vector pred(n, -1); dist[s] = 0; std::priority_queue, std::greater> pq; pq.emplace(0, s); while (!pq.empty()) { auto [d, u] = pq.top(); pq.pop(); if (d == dist[u]) { for (auto [w, v] : edges[u]) { if (dist[v] > dist[u] + w) { dist[v] = dist[u] + w; pred[v] = u; pq.emplace(dist[v], v); } } } } return {dist, pred}; } std::vector get_path(int v, const std::vector& pred) { std::vector path = {v}; while (pred[v] != -1) { path.push_back(pred[v]); v = pred[v]; } reverse(path.begin(), path.end()); return path; } }; int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); int n, m; std::cin >> n >> m; int ans = 0; while (m) { if (n < m) { ans += 1; std::swap(n, m); } else { int q = n / m; ans += q; n -= q * m; } } std::cout << ans -2 << "\n"; return 0; }