// QCFium 法 //#pragma GCC target("avx2") // yukicoder と codechef では消す #pragma GCC optimize("O3") // たまにバグる #pragma GCC optimize("unroll-loops") #ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vvvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vvvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline int getb(T set, int i) { return (set >> i) & T(1); } template inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif //using mint = modint998244353; using mint = static_modint<(int)1e9+7>; //using mint = modint; // mint::set_mod(m); using vm = vector; using vvm = vector; using vvvm = vector; using vvvvm = vector; using pim = pair; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) int mute_dump = 0; int frac_print = 0; #if __has_include() namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } #endif inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_math(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif // i=n に対する愚直解を返す. mint naive_sub(int n) { if (n == 0) return 0; if (n == 1) return 1; int nL = n / 2, nR = n - nL; // dp[l][cl][cr][tp]: // l : 左側の長さ // cl : 左側の {i-1, i-2} 以外の差が 1 の場所の数 // cr : 右側の {i-1, i-2} 以外の差が 1 の場所の数 // tp : 0: i-1 が左で i-2 と隣接していない // 1: i-1 が左で i-2 と隣接している // 2: i-1 が右で i-2 と隣接していない // 3: i-1 が右で i-2 と隣接している vvvvm dp(nL + 1, vvvm(nL, vvm(nR, vm(4)))); dp[1][0][0][0] = 1; dp[0][0][0][2] = 1; repi(i, 1, n - 1) { vvvvm ndp(nL + 1, vvvm(nL, vvm(nR, vm(4)))); repi(l, max(i - nR, 0), min(nL, i)) { int r = i - l; // <= nR rep(cl, max(l, 1)) rep(cr, max(r, 1)) { // ---------------- L ---------------- if (l < nL) { // (i-1, i-2) -> (i-1, i, i-2) ndp[l + 1][cl][cr][1] += dp[l][cl][cr][1]; // (i-1, x) -> (i-1, i, x) if (cl + 1 < nL) ndp[l + 1][cl + 1][cr][1] += dp[l][cl][cr][1]; ndp[l + 1][cl][cr][1] += 2 * dp[l][cl][cr][0]; // (x, x+1) -> (x, i, x+1) if (cl > 0) { ndp[l + 1][cl - 1][cr][0] += cl * dp[l][cl][cr][0]; ndp[l + 1][cl - 1 + 1][cr][0] += cl * dp[l][cl][cr][1]; ndp[l + 1][cl - 1][cr][0] += cl * dp[l][cl][cr][2]; if (cr + 1 < nR) ndp[l + 1][cl - 1][cr + 1][0] += cl * dp[l][cl][cr][3]; } // (x, y) -> (x, i, y) ndp[l + 1][cl][cr][0] += max(l + 1 - cl - 2, 0) * dp[l][cl][cr][0]; if (cl + 1 < nL) ndp[l + 1][cl + 1][cr][0] += max(l + 1 - cl - 2, 0) * dp[l][cl][cr][1]; ndp[l + 1][cl][cr][0] += (l + 1 - cl) * dp[l][cl][cr][2]; if (cr + 1 < nR) ndp[l + 1][cl][cr + 1][0] += (l + 1 - cl) * dp[l][cl][cr][3]; } // ---------------- R ---------------- if (r < nR) { // (i-1, i-2) -> (i-1, i, i-2) ndp[l][cl][cr][3] += dp[l][cl][cr][3]; // (i-1, x) -> (i-1, i, x) if (cr + 1 < nR) ndp[l][cl][cr + 1][3] += dp[l][cl][cr][3]; ndp[l][cl][cr][3] += 2 * dp[l][cl][cr][2]; // (x, x+1) -> (x, i, x+1) if (cr > 0) { ndp[l][cl][cr - 1][2] += cr * dp[l][cl][cr][2]; ndp[l][cl][cr - 1 + 1][2] += cr * dp[l][cl][cr][3]; ndp[l][cl][cr - 1][2] += cr * dp[l][cl][cr][0]; if (cl + 1 < nL) ndp[l][cl + 1][cr - 1][2] += cr * dp[l][cl][cr][1]; } // (x, y) -> (x, i, y) ndp[l][cl][cr][2] += max(r + 1 - cr - 2, 0) * dp[l][cl][cr][2]; if (cr + 1 < nR) ndp[l][cl][cr + 1][2] += max(r + 1 - cr - 2, 0) * dp[l][cl][cr][3]; ndp[l][cl][cr][2] += (r + 1 - cr) * dp[l][cl][cr][0]; if (cl + 1 < nL) ndp[l][cl + 1][cr][2] += (r + 1 - cr) * dp[l][cl][cr][1]; } } } dp = move(ndp); } mint res = dp[nL][0][0][0] + dp[nL][0][0][2]; return res; } // i=[0..n) に対する愚直解を返す. vm naive() { int n = 100; vm seq(n); rep(i, n) seq[i] = naive_sub(i); // ------------------------- ここを実装 ------------------------- // ------------------------------------------------------------- #ifdef _MSC_VER // 埋め込み用 string eb; eb += "vm seq = {"; rep(i, n) eb += to_string(seq[i].val()) + ","; eb.pop_back(); eb += "};\n\n"; cout << eb; #endif return seq; } //【行列】 template struct Matrix { int n, m; // 行列のサイズ(n 行 m 列) vector> v; // 行列の成分 // n×m 零行列で初期化する. Matrix(int n, int m) : n(n), m(m), v(n, vector(m)) {} // n×n 単位行列で初期化する. Matrix(int n) : n(n), m(n), v(n, vector(n)) { rep(i, n) v[i][i] = T(1); } // 二次元配列 a[0..n)[0..m) の要素で初期化する. Matrix(const vector>& a) : n(sz(a)), m(sz(a[0])), v(a) {} Matrix() : n(0), m(0) {} // 代入 Matrix(const Matrix&) = default; Matrix& operator=(const Matrix&) = default; // アクセス inline vector const& operator[](int i) const { return v[i]; } inline vector& operator[](int i) {return v[i];} // 入力 friend istream& operator>>(istream& is, Matrix& a) { rep(i, a.n) rep(j, a.m) is >> a.v[i][j]; return is; } // 行の追加 void push_back(const vector& a) { Assert(sz(a) == m); v.push_back(a); n++; } // 行の削除 void pop_back() { Assert(n > 0); v.pop_back(); n--; } // サイズ変更 void resize(int n_) { v.resize(n_); n = n_; } void resize(int n_, int m_) { n = n_; m = m_; v.resize(n); rep(i, n) v[i].resize(m); } // 空か bool empty() const { return min(n, m) == 0; } // 比較 bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; } bool operator!=(const Matrix& b) const { return !(*this == b); } // 加算,減算,スカラー倍 Matrix& operator+=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] += b[i][j]; return *this; } Matrix& operator-=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] -= b[i][j]; return *this; } Matrix& operator*=(const T& c) { rep(i, n) rep(j, m) v[i][j] *= c; return *this; } Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; } Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; } Matrix operator*(const T& c) const { return Matrix(*this) *= c; } friend Matrix operator*(const T& c, const Matrix& a) { return a * c; } Matrix operator-() const { return Matrix(*this) *= T(-1); } // 行列ベクトル積 : O(m n) vector operator*(const vector& x) const { vector y(n); rep(i, n) rep(j, m) y[i] += v[i][j] * x[j]; return y; } // ベクトル行列積 : O(m n) friend vector operator*(const vector& x, const Matrix& a) { vector y(a.m); rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j]; return y; } // 積:O(n^3) Matrix operator*(const Matrix& b) const { Matrix res(n, b.m); rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j]; return res; } Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; } // 累乗:O(n^3 log d) Matrix pow(ll d) const { Matrix res(n), pow2 = *this; while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d >>= 1; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Matrix& a) { rep(i, a.n) { os << "["; rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1]; if (i < a.n - 1) os << "\n"; } return os; } #endif }; //【線形方程式】O(n m min(n, m)) template vector gauss_jordan_elimination(const Matrix& A, const vector& b, vector>* xs = nullptr) { int n = A.n, m = A.m; // v : 拡大係数行列 (A | b) vector> v(n, vector(m + 1)); rep(i, n) rep(j, m) v[i][j] = A[i][j]; rep(i, n) v[i][m] = b[i]; // pivots[i] : 第 i 行のピボットが第何列にあるか vi pivots; // 注目位置を v[i][j] とする. int i = 0, j = 0; while (i < n && j <= m) { // 注目列の下方の行から非 0 成分を見つける. int i2 = i; while (i2 < n && v[i2][j] == T(0)) i2++; // 見つからなかったら注目位置を右に移す. if (i2 == n) { j++; continue; } // 見つかったら第 i 行とその行を入れ替える. if (i != i2) swap(v[i], v[i2]); // v[i][j] をピボットに選択する. pivots.push_back(j); // v[i][j] が 1 になるよう第 i 行全体を v[i][j] で割る. T vij_inv = T(1) / v[i][j]; repi(j2, j, m) v[i][j2] *= vij_inv; // 第 i 行以外の第 j 列の成分が全て 0 になるよう第 i 行を定数倍して減じる. rep(i2, n) { if (v[i2][j] == T(0) || i2 == i) continue; T mul = v[i2][j]; repi(j2, j, m) v[i2][j2] -= v[i][j2] * mul; } // 注目位置を右下に移す. i++; j++; } // 最後に見つかったピボットの位置が第 m 列ならば解なし. if (!pivots.empty() && pivots.back() == m) return vector(); // A x = b の特殊解 x0 の構成(任意定数は全て 0 にする) vector x0(m); int rnk = sz(pivots); rep(i, rnk) x0[pivots[i]] = v[i][m]; // 同次形 A x = 0 の一般解 {x} の基底の構成(任意定数を 1-hot にする) if (xs != nullptr) { xs->clear(); int i = 0; rep(j, m) { if (i < rnk && j == pivots[i]) { i++; continue; } vector x(m); x[j] = T(1); rep(i2, i) x[pivots[i2]] = -v[i2][j]; xs->emplace_back(move(x)); } } return x0; } // https://qiita.com/satoshin_astonish/items/a628ec64f29e77501d07 namespace satoshin { /* 内積 */ double dot(const vl& x, const vd& y) { double z = 0.0; const int n = sz(x); for (int i = 0; i < n; ++i) z += x[i] * y[i]; return z; } double dot(const vd& x, const vd& y) { double z = 0.0; const int n = sz(x); for (int i = 0; i < n; ++i) z += x[i] * y[i]; return z; } double dot(const vl& x, const vl& y) { double z = 0.0; const int n = sz(x); for (int i = 0; i < n; ++i) z += x[i] * y[i]; return z; } /* Gram-Schmidtの直交化 */ tuple Gram_Schmidt_squared(const vvl& b) { const int n = sz(b), m = sz(b[0]); int i, j, k; vd B(n); vvd GSOb(n, vd(m)), mu(n, vd(n)); for (i = 0; i < n; ++i) { mu[i][i] = 1.0; for (j = 0; j < m; ++j) GSOb[i][j] = (double)b[i][j]; for (j = 0; j < i; ++j) { mu[i][j] = dot(b[i], GSOb[j]) / dot(GSOb[j], GSOb[j]); for (k = 0; k < m; ++k) GSOb[i][k] -= mu[i][j] * GSOb[j][k]; } B[i] = dot(GSOb[i], GSOb[i]); } return std::forward_as_tuple(B, mu); } /* 部分サイズ基底簡約 */ void SizeReduce(vvl& b, vvd& mu, const int i, const int j) { ll q; const int m = sz(b[0]); if (mu[i][j] > 0.5 || mu[i][j] < -0.5) { q = (ll)round(mu[i][j]); for (int k = 0; k < m; ++k) b[i][k] -= q * b[j][k]; for (int k = 0; k <= j; ++k) mu[i][k] -= mu[j][k] * q; } } /* LLL基底簡約 */ void LLLReduce(vvl& b, const float d = 0.99) { const int n = sz(b), m = sz(b[0]); int j, i, h; double t, nu, BB, C; auto [B, mu] = Gram_Schmidt_squared(b); ll tmp; for (int k = 1; k < n;) { h = k - 1; for (j = h; j > -1; --j) SizeReduce(b, mu, k, j); //Checks if the lattice basis matrix b satisfies Lovasz condition. if (k > 0 && B[k] < (d - mu[k][h] * mu[k][h]) * B[h]) { for (i = 0; i < m; ++i) { tmp = b[h][i]; b[h][i] = b[k][i]; b[k][i] = tmp; } nu = mu[k][h]; BB = B[k] + nu * nu * B[h]; C = 1.0 / BB; mu[k][h] = nu * B[h] * C; B[k] *= B[h] * C; B[h] = BB; for (i = 0; i <= k - 2; ++i) { t = mu[h][i]; mu[h][i] = mu[k][i]; mu[k][i] = t; } for (i = k + 1; i < n; ++i) { t = mu[i][k]; mu[i][k] = mu[i][h] - nu * t; mu[i][h] = t + mu[k][h] * mu[i][k]; } --k; } else ++k; } } } // 変数係数線形漸化式の係数を計算し,埋め込み用のコードを出力する. vvm embed_coefs(const vm& seq, int TRM_ini = 1, int DEG_ini = 1, bool LLL = false) { int n = sz(seq); // TRM 項間の,係数多項式の次数 DEG 未満の変数係数線形漸化式 // Σt∈[0..TRM) Σd∈[0..DEG) c(t,d) (i-TRM+1+t)^d a[i-t] = 0 // を探す. int TRM = TRM_ini; int DEG = DEG_ini; while (1) { int h = n - TRM + 1; int w = TRM * DEG; // 行列方程式 A x = 0 を解いて一般解の基底 xs を求める. Matrix A(h, w); repi(i, TRM - 1, n - 1) { rep(t, TRM) rep(d, DEG) { A[i - TRM + 1][t * DEG + d] = mint(i - TRM + 1 + t).pow(d) * seq[i - t]; } } vvm xs; gauss_jordan_elimination(A, vm(h), &xs); // 自明解 x = 0 しか存在しない場合は失敗. if (xs.empty()) { if (DEG == 1) { DEG = TRM + DEG; TRM = 1; } else { TRM++; DEG--; } continue; } dump("TRM:", TRM, "DEG:", DEG); dump("xs:"); frac_print = 1; dumpel(xs); frac_print = 0; // 変数係数線形漸化式の係数 vvm coefs(TRM, vm(DEG)); if (LLL) { // A x = 0 の解空間の基底に LLL を適用する. h = sz(xs); vvl lat(h + w, vl(w)); rep(i, h) rep(j, w) lat[i][j] = xs[i][j].val(); rep(i, w) lat[h + i][i] = mint::mod(); h = sz(lat); satoshin::LLLReduce(lat); // L1 ノルムをチェックする. ll sum = 0; rep(j, w) sum += abs(lat[0][j]); dump("L1:", sum); // L1 ノルムが大きいものは捨てる. repi(i, 1, h - 1) { ll sum2 = 0; rep(j, w) sum2 += abs(lat[i][j]); if (sum2 > sum * 10.) { lat.resize(i); h = i; break; } } dump("lat:"); frac_print = 1; dumpel(lat); frac_print = 0; rep(t, TRM) rep(d, DEG) coefs[t][d] = lat[0][t * DEG + d]; } else { rep(t, TRM) rep(d, DEG) coefs[t][d] = xs.back()[t * DEG + d]; } #ifdef _MSC_VER // 埋め込み用の文字列を出力する. auto to_signed_string = [](mint x) { int v = x.val(); int mod = mint::mod(); if (v > mod / 2) v -= mod; return to_string(v); }; string eb; eb += "\n"; eb += "constexpr int TRM = "; eb += to_string(TRM); eb += ";\n"; eb += "constexpr int DEG = "; eb += to_string(DEG); eb += ";\n"; eb += "mint coefs[TRM][DEG] = {\n"; rep(t, TRM) { eb += "{"; rep(d, DEG) eb += to_signed_string(coefs[t][d]) + ","; eb.pop_back(); eb += "},\n"; } eb.pop_back(); eb.pop_back(); eb += "};\n"; cout << eb; #endif return coefs; } return vvm(); } // 数列 seq を延長して seq[0..N] にする. void solve(vm& seq, int N, vvm coefs) { int TRM = sz(coefs); int DEG = sz(coefs[0]); int n = sz(seq); seq.resize(N + 1); // TRM 項間の,係数多項式の次数 DEG 未満の変数係数線形漸化式 // Σt∈[0..TRM) Σd∈[0..DEG) coefs[t][f] (i-TRM+1+t)^d a[i-t] = 0 // を用いて数列 a を延長する. repi(i, n, N) { mint dnm = 0; mint pow_i = 1; rep(d, DEG) { dnm += coefs[0][d] * pow_i; pow_i *= i - TRM + 1; } mint num = 0; repi(t, 1, TRM - 1) { mint pow_i = 1; rep(d, DEG) { num += coefs[t][d] * pow_i * seq[i - t]; pow_i *= i - TRM + 1 + t; } } // dnm * a[i] + num = 0 を解く.分母 0 に注意! Assert(dnm != 0); seq[i] = -num / dnm; } } // 数列 seq を延長して seq[0..N] にする. void solve(vm& seq, int N) { // --------------- embed_coefs() からの出力を貼る ---------------- constexpr int TRM = 10; constexpr int DEG = 6; mint coefs[TRM][DEG] = { {-12144467,-45744924,-329200246,360290196,0,0}, {-174144150,-265090320,276817567,446878697,-360290196,0}, {355383212,-249369640,-209890212,257870051,-99274515,0}, {151137741,-8310927,11193170,7018752,-444019743,180145098}, {-11596251,-153970058,-166317377,245710653,394525819,459564712}, {-166291754,-425167578,114001854,-434374840,-279419533,3}, {401036496,-19432342,441751666,88990201,-169282748,-279419615}, {97648158,-371828630,155663880,-100398101,127792210,-180145102}, {61130385,388330561,-482907353,-39226671,388807937,-180145097}, {-13677274,33276744,133534642,-310153882,0,1} }; // -------------------------------------------------------------- int n = sz(seq); seq.resize(N + 1); // TRM 項間の,係数多項式の次数 DEG 未満の変数係数線形漸化式 // Σt∈[0..TRM) Σd∈[0..DEG) coefs[t][f] (i-TRM+1+t)^d a[i-t] = 0 // を用いて数列 a を延長する. repi(i, n, N) { mint dnm = 0; mint pow_i = 1; rep(d, DEG) { dnm += coefs[0][d] * pow_i; pow_i *= i - TRM + 1; } mint num = 0; repi(t, 1, TRM - 1) { mint pow_i = 1; rep(d, DEG) { num += coefs[t][d] * pow_i * seq[i - t]; pow_i *= i - TRM + 1 + t; } } // dnm * a[i] + num = 0 を解く.分母 0 に注意! Assert(dnm != 0); seq[i] = -num / dnm; } } vm seq = { 0,1,2,2,8,28,152,952,7208,62296,605864,6522952,76951496,986411272,647501133,653303042,170637030,248109503,700583494,619914523,682935856,443753916,423068688,507501942,315541972,110825117,848156395,798418282,920964362,23823302,114894774,279365223,992413784,833179437,785518302,524368220,42214454,140345871,188150268,808714798,718376249,732000901,955005007,139255097,484615744,615066955,726914809,856989248,460819998,321277105,536397091,555447300,597473569,217709372,24981477,143561526,171000806,137649694,749333590,700935246,916763337,762367836,296796066,236278263,398507715,148909632,568524543,926513708,163591024,339393165,549241395,548924577,915489821,706913104,380913764,993919668,895691202,628078606,542382606,735060428,385303214,453133962,470556393,439972973,4764973,459438929,49172129,93448766,14767450,302365655,44994640,637650527,462797839,174866371,963824426,761996745,999013044,209330964,997280223,561428453 }; int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); //【方法】 // 愚直を書いて集めたデータをもとに変数係数線形漸化式を復元する. //【使い方】 // 1. vm seq = naive() を実装する. // 2. coefs = embed_coefs(seq, TRM_ini, DEG_ini, LLL); を実行する. // 3. 出力を solve() 内に貼る. // 4. solve(seq, n, [coefs]) で勝手に第 n 項を求めてくれる. // 愚直解を用意する.再計算がイヤなら埋め込む. //auto seq = naive(); // 愚直解を渡して変数係数線形漸化式の係数を得る.再計算がイヤなら埋め込む. //auto coefs = embed_coefs(seq, 1, 1, 0); // 引数:seq, TRM_ini, DEG_ini, LLL int n; cin >> n; // 数列 seq を seq[0..n] に延長する. //solve(seq, n, coefs); solve(seq, n); cout << seq[n] << "\n"; } /* vm seq = {0,1,2,2,8,28,152,952,7208,62296,605864,6522952,76951496,986411272,647501133,653303042,170637030,248109503,700583494,619914523,682935856,443753916,423068688,507501942,315541972,110825117,848156395,798418282,920964362,23823302,114894774,279365223,992413784,833179437,785518302,524368220,42214454,140345871,188150268,808714798,718376249,732000901,955005007,139255097,484615744,615066955,726914809,856989248,460819998,321277105,536397091,555447300,597473569,217709372,24981477,143561526,171000806,137649694,749333590,700935246,916763337,762367836,296796066,236278263,398507715,148909632,568524543,926513708,163591024,339393165,549241395,548924577,915489821,706913104,380913764,993919668,895691202,628078606,542382606,735060428,385303214,453133962,470556393,439972973,4764973,459438929,49172129,93448766,14767450,302365655,44994640,637650527,462797839,174866371,963824426,761996745,999013044,209330964,997280223,561428453}; TRM: 10 DEG: 6 xs: 0: -11682/1681 -11160/3373 -17194/6985 9246/20561 0 0 3187/3288 -6669/3091 27273/18896 15533/6474 -9246/20561 0 -5969/7114 6563/7266 24202/23417 23622/5815 23115/20561 0 3401/15681 -23413/16876 16812/19013 3457/881 23929/9693 4623/20561 24401/12667 -1773/10337 22370/25041 25623/7013 -29063/25266 -13869/20561 8659/21981 10389/10082 -26067/23446 10649/8183 14963/16310 0 5128/9631 -25211/17620 -19040/19349 -16259/11581 -10855/18972 18492/20561 16911/21211 -22983/17839 -13928/3483 1939/1189 20113/14821 -4623/20561 -17389/22290 17035/25772 -15352/22649 -5021/13032 -3928/28601 -4623/20561 -1268/22563 -8413/23070 28917/27940 12196/8159 1 0 1: 20856/25279 -977/8766 6919/1613 -16531/9373 0 0 16814/15803 23755/6809 24652/3645 -25561/16067 16531/9373 0 -4749/2192 14683/3966 8057/10839 -16552/1493 1872/21365 0 -10901/14854 -2119/4091 10541/8666 -26795/8691 15915/20668 -16531/18746 -20362/9917 19243/10554 23655/11929 -15307/4721 497/24442 30847/18746 11432/23561 -12655/19096 10480/11877 -30652/18979 -22657/3790 3 -122/23155 -14767/8491 21495/10687 11904/27857 15999/14207 939/29980 28837/19304 -10531/8356 25277/9437 -111/28636 2528/1925 -22729/24397 -12909/22771 11359/17413 -8619/6260 12181/3569 22509/3431 -28702/13095 -12063/14111 10394/2945 -4610/5961 -17067/18781 0 1 constexpr int TRM = 10; constexpr int DEG = 6; mint coefs[TRM][DEG] = { {-12144467,-45744924,-329200246,360290196,0,0}, {-174144150,-265090320,276817567,446878697,-360290196,0}, {355383212,-249369640,-209890212,257870051,-99274515,0}, {151137741,-8310927,11193170,7018752,-444019743,180145098}, {-11596251,-153970058,-166317377,245710653,394525819,459564712}, {-166291754,-425167578,114001854,-434374840,-279419533,3}, {401036496,-19432342,441751666,88990201,-169282748,-279419615}, {97648158,-371828630,155663880,-100398101,127792210,-180145102}, {61130385,388330561,-482907353,-39226671,388807937,-180145097}, {-13677274,33276744,133534642,-310153882,0,1}}; 1000 987571384 */