#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vvvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vvvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline T getb(T set, int i) { return (set >> i) & T(1); } template inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint998244353; //using mint = static_modint<(int)1e9+7>; //using mint = modint; // mint::set_mod(m); using vm = vector; using vvm = vector; using vvvm = vector; using vvvvm = vector; using pim = pair; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) int mute_dump = 0; int frac_print = 0; #if __has_include() namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } #endif inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_math(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); rep(i,9)cout<> a >> b; if (!zero_indexed) { --a; --b; } g[a].push_back(b); if (!directed && a != b) g[b].push_back(a); } return g; } // (グラフ, 根) を naive() への入力形式に直す. vi inputform(const Graph& g, int r) { int n = sz(g); vi par(n); function dfs = [&](int s, int p) { par[s] = { p + 1 }; repe(t, g[s]) { if (t == p) continue; dfs(t, s); } }; dfs(r, -1); return par; } //【行列】 template struct Matrix { int n, m; // 行列のサイズ(n 行 m 列) vector> v; // 行列の成分 // n×m 零行列で初期化する. Matrix(int n, int m) : n(n), m(m), v(n, vector(m)) {} // n×n 単位行列で初期化する. Matrix(int n) : n(n), m(n), v(n, vector(n)) { rep(i, n) v[i][i] = T(1); } // 二次元配列 a[0..n)[0..m) の要素で初期化する. Matrix(const vector>& a) : n(sz(a)), m(sz(a[0])), v(a) {} Matrix() : n(0), m(0) {} // 代入 Matrix(const Matrix&) = default; Matrix& operator=(const Matrix&) = default; // アクセス inline vector const& operator[](int i) const { return v[i]; } inline vector& operator[](int i) {return v[i];} // 入力 friend istream& operator>>(istream& is, Matrix& a) { rep(i, a.n) rep(j, a.m) is >> a.v[i][j]; return is; } // 行の追加 void push_back(const vector& a) { Assert(sz(a) == m); v.push_back(a); n++; } // 行の削除 void pop_back() { Assert(n > 0); v.pop_back(); n--; } // サイズ変更 void resize(int n_) { v.resize(n_); n = n_; } void resize(int n_, int m_) { n = n_; m = m_; v.resize(n); rep(i, n) v[i].resize(m); } // 空か bool empty() const { return min(n, m) == 0; } // 比較 bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; } bool operator!=(const Matrix& b) const { return !(*this == b); } // 加算,減算,スカラー倍 Matrix& operator+=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] += b[i][j]; return *this; } Matrix& operator-=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] -= b[i][j]; return *this; } Matrix& operator*=(const T& c) { rep(i, n) rep(j, m) v[i][j] *= c; return *this; } Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; } Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; } Matrix operator*(const T& c) const { return Matrix(*this) *= c; } friend Matrix operator*(const T& c, const Matrix& a) { return a * c; } Matrix operator-() const { return Matrix(*this) *= T(-1); } // 行列ベクトル積 : O(m n) vector operator*(const vector& x) const { vector y(n); rep(i, n) rep(j, m) y[i] += v[i][j] * x[j]; return y; } // ベクトル行列積 : O(m n) friend vector operator*(const vector& x, const Matrix& a) { vector y(a.m); rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j]; return y; } // 積:O(n^3) Matrix operator*(const Matrix& b) const { Matrix res(n, b.m); rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j]; return res; } Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; } // 累乗:O(n^3 log d) Matrix pow(ll d) const { Matrix res(n), pow2 = *this; while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d >>= 1; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Matrix& a) { rep(i, a.n) { os << "["; rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1]; if (i < a.n - 1) os << "\n"; } return os; } #endif }; //【行簡約形(行交換なし)】O(n m min(n, m)) template vector row_reduced_form(Matrix& A) { int n = A.n, m = A.m; vector piv; piv.reserve(min(n, m)); // 未確定の列を記録しておくリスト list rjs; rep(j, m) rjs.push_back(j); rep(i, n) { // 第 i 行の係数を左から走査し非 0 を見つける. auto it = rjs.begin(); for (; it != rjs.end(); it++) if (A[i][*it] != 0) break; // 第 i 行の全てが 0 なら無視する. if (it == rjs.end()) continue; // A[i][j] をピボットに選択する. int j = *it; rjs.erase(it); piv.emplace_back(i, j); // A[i][j] が 1 になるよう行全体を A[i][j] で割る. T Aij_inv = T(1) / A[i][j]; repi(j2, j, m - 1) A[i][j2] *= Aij_inv; // 第 i 行以外の第 j 列の成分が全て 0 になるよう第 i 行を定数倍して減じる. rep(i2, n) if (A[i2][j] != 0 && i2 != i) { T mul = A[i2][j]; repi(j2, j, m - 1) A[i2][j2] -= A[i][j2] * mul; } } return piv; } //【逆行列】O(n^3) template Matrix inverse_matrix(const Matrix& mat) { int n = mat.n; // 元の行列 mat と単位行列を繋げた拡大行列 v を作る. vector> v(n, vector(2 * n)); rep(i, n) rep(j, n) { v[i][j] = mat[i][j]; if (i == j) v[i][n + j] = 1; } int m = 2 * n; // 注目位置を (i, j)(i 行目かつ j 列目)とする. int i = 0, j = 0; // 拡大行列に対して行基本変形を行い,左側を単位行列にすることを目指す. while (i < n && j < m) { // 同じ列の下方の行から非 0 成分を見つける. int i2 = i; while (i2 < n && v[i2][j] == T(0)) i2++; // 見つからなかったら全て 0 の列があったので mat は非正則 if (i2 == n) return Matrix(); // 見つかったら i 行目とその行を入れ替える. if (i != i2) swap(v[i], v[i2]); // v[i][j] が 1 になるよう行全体を v[i][j] で割る. T vij_inv = T(1) / v[i][j]; repi(j2, j, m - 1) v[i][j2] *= vij_inv; // v[i][j] と同じ列の成分が全て 0 になるよう i 行目を定数倍して減じる. rep(i2, n) { // i 行目だけは引かない. if (i2 == i) continue; T mul = v[i2][j]; repi(j2, j, m - 1) v[i2][j2] -= v[i][j2] * mul; } // 注目位置を右下に移す. i++; j++; } // 拡大行列の右半分が mat の逆行列なのでコピーする. Matrix mat_inv(n, n); rep(i, n) rep(j, n) mat_inv[i][j] = v[i][n + j]; return mat_inv; } //【根付き木の同型類】O(n log n) vi rooted_tree_classification(const Graph& g, int r) { int n = sz(g); static map to_id; vi id(n); function dfs = [&](int s, int p) { vi ch; repe(t, g[s]) { if (t == p) continue; ch.push_back(dfs(t, s)); } sort(all(ch)); if (to_id.count(ch)) id[s] = to_id[ch]; else id[s] = to_id[ch] = sz(to_id); return id[s]; }; dfs(r, -1); return id; } // 遷移行列の係数を計算し,埋め込み用のコードを出力する. // 待てない場合は lv_max や LB_max を指定する. void embed_coefs(int lv_max = INF, int LB_max = INF) { using TREE = vi; // 木は親の列 p[1..n) で表す. vector trees{ {} }; int idx = 0; int ID = -1; int PDIM = -1; repi(lv, 1, INF) { dump("----------- lv:", lv, "--------------"); // 上用の木(位置指定子追加)と下用の木(そのまま)に整形する. vector treesT, treesB(trees); rep(i, idx) repi(p, 0, sz(trees[i])) { treesT.push_back(trees[i]); treesT.back().push_back(p); } int LT = sz(treesT); int LB = min(sz(treesB), LB_max); dump("LT:", LT, "LB:", LB); // (i,j) 成分が naive(treesT[i] join treesB[j]) であるような行列 mat を得る. Matrix mat(LT, LB); rep(i, LT) rep(j, LB) { TREE tree(treesT[i]); int p0 = tree.back(); tree.pop_back(); int offset = sz(tree); repe(p, treesB[j]) { int np = (p == 0 ? p0 : p + offset); tree.push_back(np); } mat[i][j] = naive(tree); } //dump("mat:"); dump(mat); // mat に対して行基本変形を行いピボット位置のリスト piv を得る. auto piv = row_reduced_form(mat); int DIM = sz(piv); dump("piv(", DIM, "):"); dump(piv); // rank の更新がなかったら必要な情報は揃ったとみなして打ち切る(たまにミスる) if (lv == lv_max || (DIM > 0 && DIM == PDIM)) { // 選択した行と列をそれぞれ昇順に並べて is, js とする(0 始まりのはず) vi is(DIM), js(DIM); rep(r, DIM) tie(is[r], js[r]) = piv[r]; sort(all(js)); // js : 本質的に区別しなければならない木のリスト // is : js を区別するのに必要最低限の接ぎ木のリスト // 基底の変換行列 P を得る. Matrix P(DIM, DIM); rep(i_, DIM) rep(j_, DIM) { int i = is[i_]; int j = js[j_]; TREE tree(treesT[i]); int p0 = tree.back(); tree.pop_back(); int offset = sz(tree); repe(p, treesB[j]) { int np = (p == 0 ? p0 : p + offset); tree.push_back(np); } P[i_][j_] = naive(tree); } // P の逆行列 P_inv を得る. auto P_inv = inverse_matrix(P); // apply の表現行列を得る. Matrix matA(DIM, DIM); rep(i_, DIM) rep(j_, DIM) { int i = is[i_]; int j = js[j_]; TREE tree(treesT[i]); int offset = sz(tree); repe(p, treesB[j]) { int np = p + offset; tree.push_back(np); } matA[i_][j_] = naive(tree); } matA = P_inv * matA; // merge の表現テンソルを得る. vvvm tsrM(DIM, vvm(DIM, vm(DIM))); rep(j1_, DIM) rep(j2_, DIM) { if (j1_ > j2_) { // 子の順序は無視する. rep(i_, DIM) { tsrM[j1_][j2_][i_] = tsrM[j2_][j1_][i_]; } } else { rep(i_, DIM) { int i = is[i_]; int j1 = js[j1_]; int j2 = js[j2_]; TREE tree(treesT[i]); int p0 = tree.back(); tree.pop_back(); int offset = sz(tree); repe(p, treesB[j1]) { int np = (p == 0 ? p0 : p + offset); tree.push_back(np); } offset = sz(tree); repe(p, treesB[j2]) { int np = (p == 0 ? p0 : p + offset); tree.push_back(np); } tsrM[j1_][j2_][i_] = naive(tree); } tsrM[j1_][j2_] = P_inv * tsrM[j1_][j2_]; } } // 根を閉じるためのベクトルを得る. vm vecP(DIM); rep(i, DIM) vecP[i] = P[0][i]; // スパース埋め込み用の文字列を出力する. auto to_signed_string = [](mint x) { int v = x.val(); int mod = mint::mod(); if (v > mod / 2) v -= mod; return to_string(v); }; string eb; eb += "constexpr int DIM = "; eb += to_string(DIM); eb += ";\n"; eb += "tuple matA[] = {"; rep(i, DIM) rep(j, DIM) { if (matA[i][j] == 0) continue; eb += "{"; eb += to_string(i); eb += ","; eb += to_string(j); eb += ","; eb += to_signed_string(matA[i][j]); eb += "},"; } eb.pop_back(); eb += "};\n"; eb += "tuple tsrM[] = {"; rep(i, DIM) rep(j1, DIM) rep(j2, DIM) { if (tsrM[j1][j2][i] == 0) continue; eb += "{"; eb += to_string(i); eb += ","; eb += to_string(j1); eb += ","; eb += to_string(j2); eb += ","; eb += to_signed_string(tsrM[j1][j2][i]); eb += "},"; } eb.pop_back(); eb += "};\n"; eb += "VTYPE vecP[DIM] = {"; rep(j, DIM) eb += to_signed_string(vecP[j]) + ","; eb.pop_back(); eb += "};\n"; cout << eb; exit(0); } // 基底ガチャ //mt19937_64 mt((int)time(NULL)); shuffle(trees.begin() + idx, trees.end(), mt); // 次に大きい木たちを trees に追加する. int nidx = sz(trees); repi(i, idx, nidx - 1) rep(p, lv) { trees.push_back(trees[i]); trees.back().push_back(p); Graph g(lv + 1); rep(j, lv) { g[j + 1].push_back(trees.back()[j]); g[trees.back()[j]].push_back(j + 1); } auto hash = rooted_tree_classification(g, 0); if (hash[0] <= ID) { trees.pop_back(); continue; } ID = hash[0]; } idx = nidx; PDIM = DIM; } } template vector solve(const Graph& g, int r) { // --------------- embed_coefs() からの出力を貼る ---------------- constexpr int DIM = 9; vector> matA = { {1,0,1},{2,3,-499122176},{2,4,-4},{2,5,-499122176},{2,6,499122174},{2,7,-11},{2,8,499122173},{3,1,1},{3,3,499122176},{3,4,499122176},{3,5,499122175},{3,6,499122176},{3,7,499122175},{3,8,-2},{4,3,499122176},{4,4,-499122169},{4,5,499122176},{4,6,-499122171},{4,7,-499122156},{4,8,7},{5,3,1},{5,4,-3},{5,5,1},{5,6,-2},{5,7,-8},{5,8,-2},{6,2,1},{6,3,-499122176},{6,4,-499122175},{6,5,-499122175},{6,6,-499122176},{6,7,-499122174},{6,8,2},{7,4,499122173},{7,6,-3},{7,7,499122167},{7,8,499122173},{8,4,3},{8,6,3},{8,7,8},{8,8,3} }; vector> tsrM = { {0,0,0,1},{1,0,1,1},{1,1,0,1},{2,0,2,1},{2,1,1,1},{2,1,6,-1},{2,1,7,1},{2,1,8,499122176},{2,2,0,1},{2,2,4,1},{2,2,5,499122176},{2,2,6,-3},{2,2,7,2},{2,2,8,-3},{2,3,3,-499122174},{2,3,4,499122176},{2,3,5,1},{2,3,6,-1},{2,3,7,-3},{2,3,8,499122174},{2,4,2,1},{2,4,3,499122176},{2,4,4,2},{2,4,5,-3},{2,4,6,499122169},{2,4,7,-1},{2,4,8,499122165},{2,5,2,499122176},{2,5,3,1},{2,5,4,-3},{2,5,5,499122174},{2,5,6,499122172},{2,5,7,499122165},{2,5,8,-11},{2,6,1,-1},{2,6,2,-3},{2,6,3,-1},{2,6,4,499122169},{2,6,5,499122172},{2,6,6,499122172},{2,6,7,-18},{2,6,8,-12},{2,7,1,1},{2,7,2,2},{2,7,3,-3},{2,7,4,-1},{2,7,5,499122165},{2,7,6,-18},{2,7,7,-20},{2,7,8,-36},{2,8,1,499122176},{2,8,2,-3},{2,8,3,499122174},{2,8,4,499122165},{2,8,5,-11},{2,8,6,-12},{2,8,7,-36},{2,8,8,499122145},{3,0,3,1},{3,1,6,499122176},{3,1,7,-499122176},{3,1,8,249561089},{3,2,4,-499122176},{3,2,5,249561089},{3,2,6,-499122176},{3,2,7,3},{3,2,8,-499122173},{3,3,0,1},{3,3,3,249561087},{3,3,4,249561089},{3,3,5,499122176},{3,3,6,-1},{3,3,7,-499122173},{3,3,8,249561090},{3,4,2,-499122176},{3,4,3,249561089},{3,4,4,3},{3,4,5,-499122173},{3,4,6,-249561085},{3,4,7,-499122165},{3,4,8,-249561077},{3,5,2,249561089},{3,5,3,499122176},{3,5,4,-499122173},{3,5,5,249561090},{3,5,6,249561089},{3,5,7,-249561077},{3,5,8,-499122169},{3,6,1,499122176},{3,6,2,-499122176},{3,6,3,-1},{3,6,4,-249561085},{3,6,5,249561089},{3,6,6,-249561089},{3,6,7,10},{3,6,8,5},{3,7,1,-499122176},{3,7,2,3},{3,7,3,-499122173},{3,7,4,-499122165},{3,7,5,-249561077},{3,7,6,10},{3,7,7,36},{3,7,8,31},{3,8,1,249561089},{3,8,2,-499122173},{3,8,3,249561090},{3,8,4,-249561077},{3,8,5,-499122169},{3,8,6,5},{3,8,7,31},{3,8,8,-249561067},{4,0,4,1},{4,1,2,1},{4,1,6,-499122174},{4,1,7,499122174},{4,1,8,249561090},{4,2,1,1},{4,2,4,499122174},{4,2,5,249561090},{4,2,6,-499122169},{4,2,7,-3},{4,2,8,-499122167},{4,3,3,249561084},{4,3,4,249561090},{4,3,5,499122176},{4,3,6,3},{4,3,7,-499122167},{4,3,8,249561097},{4,4,0,1},{4,4,2,499122174},{4,4,3,249561090},{4,4,4,-3},{4,4,5,-499122167},{4,4,6,-249561069},{4,4,7,-499122166},{4,4,8,-249561054},{4,5,2,249561090},{4,5,3,499122176},{4,5,4,-499122167},{4,5,5,249561097},{4,5,6,249561100},{4,5,7,-249561054},{4,5,8,-499122145},{4,6,1,-499122174},{4,6,2,-499122169},{4,6,3,3},{4,6,4,-249561069},{4,6,5,249561100},{4,6,6,-249561078},{4,6,7,47},{4,6,8,31},{4,7,1,499122174},{4,7,2,-3},{4,7,3,-499122167},{4,7,4,-499122166},{4,7,5,-249561054},{4,7,6,47},{4,7,7,72},{4,7,8,103},{4,8,1,249561090},{4,8,2,-499122167},{4,8,3,249561097},{4,8,4,-249561054},{4,8,5,-499122145},{4,8,6,31},{4,8,7,103},{4,8,8,-249561002},{5,0,5,1},{5,1,3,1},{5,1,6,-1},{5,1,7,-2},{5,1,8,-4},{5,2,4,-2},{5,2,5,-4},{5,2,6,-6},{5,2,7,-12},{5,2,8,-16},{5,3,1,1},{5,3,3,2},{5,3,4,-4},{5,3,5,-2},{5,3,6,-2},{5,3,7,-16},{5,3,8,-12},{5,4,2,-2},{5,4,3,-4},{5,4,4,-12},{5,4,5,-16},{5,4,6,-18},{5,4,7,-46},{5,4,8,-48},{5,5,0,1},{5,5,2,-4},{5,5,3,-2},{5,5,4,-16},{5,5,5,-12},{5,5,6,-10},{5,5,7,-48},{5,5,8,-36},{5,6,1,-1},{5,6,2,-6},{5,6,3,-2},{5,6,4,-18},{5,6,5,-10},{5,6,6,-6},{5,6,7,-46},{5,6,8,-28},{5,7,1,-2},{5,7,2,-12},{5,7,3,-16},{5,7,4,-46},{5,7,5,-48},{5,7,6,-46},{5,7,7,-144},{5,7,8,-128},{5,8,1,-4},{5,8,2,-16},{5,8,3,-12},{5,8,4,-48},{5,8,5,-36},{5,8,6,-28},{5,8,7,-128},{5,8,8,-92},{6,0,6,1},{6,1,6,-499122176},{6,1,7,499122176},{6,1,8,-249561089},{6,2,4,499122176},{6,2,5,-249561089},{6,2,6,499122176},{6,2,7,-3},{6,2,8,499122173},{6,3,3,-249561087},{6,3,4,-249561089},{6,3,5,-499122176},{6,3,6,1},{6,3,7,499122173},{6,3,8,-249561090},{6,4,2,499122176},{6,4,3,-249561089},{6,4,4,-3},{6,4,5,499122173},{6,4,6,249561085},{6,4,7,499122165},{6,4,8,249561077},{6,5,2,-249561089},{6,5,3,-499122176},{6,5,4,499122173},{6,5,5,-249561090},{6,5,6,-249561089},{6,5,7,249561077},{6,5,8,499122169},{6,6,0,1},{6,6,1,-499122176},{6,6,2,499122176},{6,6,3,1},{6,6,4,249561085},{6,6,5,-249561089},{6,6,6,249561089},{6,6,7,-10},{6,6,8,-5},{6,7,1,499122176},{6,7,2,-3},{6,7,3,499122173},{6,7,4,499122165},{6,7,5,249561077},{6,7,6,-10},{6,7,7,-36},{6,7,8,-31},{6,8,1,-249561089},{6,8,2,499122173},{6,8,3,-249561090},{6,8,4,249561077},{6,8,5,499122169},{6,8,6,-5},{6,8,7,-31},{6,8,8,249561067},{7,0,7,1},{7,1,4,1},{7,1,6,499122175},{7,1,7,-499122174},{7,1,8,249561087},{7,2,2,1},{7,2,4,-499122174},{7,2,5,249561087},{7,2,6,499122172},{7,2,7,2},{7,2,8,499122170},{7,3,3,249561090},{7,3,4,249561087},{7,3,5,499122176},{7,3,6,-2},{7,3,7,499122170},{7,3,8,249561082},{7,4,1,1},{7,4,2,-499122174},{7,4,3,249561087},{7,4,4,2},{7,4,5,499122170},{7,4,6,-249561100},{7,4,7,499122168},{7,4,8,-249561111},{7,5,2,249561087},{7,5,3,499122176},{7,5,4,499122170},{7,5,5,249561082},{7,5,6,249561081},{7,5,7,-249561111},{7,5,8,499122156},{7,6,1,499122175},{7,6,2,499122172},{7,6,3,-2},{7,6,4,-249561100},{7,6,5,249561081},{7,6,6,-249561094},{7,6,7,-29},{7,6,8,-19},{7,7,0,1},{7,7,1,-499122174},{7,7,2,2},{7,7,3,499122170},{7,7,4,499122168},{7,7,5,-249561111},{7,7,6,-29},{7,7,7,-51},{7,7,8,-67},{7,8,1,249561087},{7,8,2,499122170},{7,8,3,249561082},{7,8,4,-249561111},{7,8,5,499122156},{7,8,6,-19},{7,8,7,-67},{7,8,8,-249561143},{8,0,8,1},{8,1,5,1},{8,1,6,2},{8,1,7,2},{8,1,8,5},{8,2,3,1},{8,2,4,2},{8,2,5,5},{8,2,6,7},{8,2,7,12},{8,2,8,17},{8,3,2,1},{8,3,3,-1},{8,3,4,5},{8,3,5,3},{8,3,6,3},{8,3,7,17},{8,3,8,13},{8,4,2,2},{8,4,3,5},{8,4,4,12},{8,4,5,17},{8,4,6,19},{8,4,7,46},{8,4,8,49},{8,5,1,1},{8,5,2,5},{8,5,3,3},{8,5,4,17},{8,5,5,13},{8,5,6,11},{8,5,7,49},{8,5,8,37},{8,6,1,2},{8,6,2,7},{8,6,3,3},{8,6,4,19},{8,6,5,11},{8,6,6,7},{8,6,7,47},{8,6,8,29},{8,7,1,2},{8,7,2,12},{8,7,3,17},{8,7,4,46},{8,7,5,49},{8,7,6,47},{8,7,7,144},{8,7,8,129},{8,8,0,1},{8,8,1,5},{8,8,2,17},{8,8,3,13},{8,8,4,49},{8,8,5,37},{8,8,6,29},{8,8,7,129},{8,8,8,93} }; vector vecP = { 0,0,0,0,6,6,6,24,20 }; // -------------------------------------------------------------- // 木 DP int n = sz(g); vector> dp(n); rep(s, n) { dp[s].fill(0); dp[s][0] = 1; } auto apply = [&](const array& x) { array z; z.fill(0); for (auto [i, j, v] : matA) z[i] += v * x[j]; return z; }; auto merge = [&](const array& x, const array& y) { array z; z.fill(0); for (auto [i, j1, j2, v] : tsrM) z[i] += v * x[j1] * y[j2]; return z; }; function dfs = [&](int s, int p) { bool first_call = true; repe(t, g[s]) { if (t == p) continue; dfs(t, s); if (first_call) { dp[s] = dp[t]; first_call = false; } else { dp[s] = merge(dp[s], dp[t]); } } dp[s] = apply(dp[s]); }; dfs(r, -1); vector res(n, 0); rep(s, n) rep(j, DIM) res[s] += vecP[j] * dp[s][j]; return res; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); //【方法】 // 愚直を書いて集めたデータをもとに遷移テンソルを復元する. //【使い方】 // 1. mint naive(親の列) を実装する. // 2. embed_coefs(); を実行する. // 3. 出力を solve() 内に貼る. // 4. auto dp = solve<答えの型>(グラフ, 根) で勝手に DP してくれる. // embed_coefs(INF, INF); int n; cin >> n; auto g = read_Graph(n); dump("naive:", naive(inputform(g, 0))); dump("======"); auto dp = solve(g, 0); cout << dp[0].val() << "\n"; // スパースにして 624 ms → 463 ms } /* ----------- lv: 1 -------------- LT: 0 LB: 1 piv( 0 ): ----------- lv: 2 -------------- LT: 1 LB: 2 piv( 0 ): ----------- lv: 3 -------------- LT: 3 LB: 4 piv( 1 ): (1,2) ----------- lv: 4 -------------- LT: 9 LB: 8 piv( 5 ): (0,4) (1,2) (2,5) (3,1) (4,3) ----------- lv: 5 -------------- LT: 25 LB: 17 piv( 9 ): (0,4) (1,2) (2,5) (3,1) (4,3) (6,8) (9,0) (10,6) (13,9) ----------- lv: 6 -------------- LT: 70 LB: 37 piv( 9 ): (0,4) (1,2) (2,5) (3,1) (4,3) (6,8) (9,0) (10,6) (13,9) constexpr int DIM = 9; tuple matA[] = {{1,0,1},{2,3,-499122176},{2,4,-4},{2,5,-499122176},{2,6,499122174},{2,7,-11},{2,8,499122173},{3,1,1},{3,3,499122176},{3,4,499122176},{3,5,499122175},{3,6,499122176},{3,7,499122175},{3,8,-2},{4,3,499122176},{4,4,-499122169},{4,5,499122176},{4,6,-499122171},{4,7,-499122156},{4,8,7},{5,3,1},{5,4,-3},{5,5,1},{5,6,-2},{5,7,-8},{5,8,-2},{6,2,1},{6,3,-499122176},{6,4,-499122175},{6,5,-499122175},{6,6,-499122176},{6,7,-499122174},{6,8,2},{7,4,499122173},{7,6,-3},{7,7,499122167},{7,8,499122173},{8,4,3},{8,6,3},{8,7,8},{8,8,3}}; tuple tsrM[] = {{0,0,0,1},{1,0,1,1},{1,1,0,1},{2,0,2,1},{2,1,1,1},{2,1,6,-1},{2,1,7,1},{2,1,8,499122176},{2,2,0,1},{2,2,4,1},{2,2,5,499122176},{2,2,6,-3},{2,2,7,2},{2,2,8,-3},{2,3,3,-499122174},{2,3,4,499122176},{2,3,5,1},{2,3,6,-1},{2,3,7,-3},{2,3,8,499122174},{2,4,2,1},{2,4,3,499122176},{2,4,4,2},{2,4,5,-3},{2,4,6,499122169},{2,4,7,-1},{2,4,8,499122165},{2,5,2,499122176},{2,5,3,1},{2,5,4,-3},{2,5,5,499122174},{2,5,6,499122172},{2,5,7,499122165},{2,5,8,-11},{2,6,1,-1},{2,6,2,-3},{2,6,3,-1},{2,6,4,499122169},{2,6,5,499122172},{2,6,6,499122172},{2,6,7,-18},{2,6,8,-12},{2,7,1,1},{2,7,2,2},{2,7,3,-3},{2,7,4,-1},{2,7,5,499122165},{2,7,6,-18},{2,7,7,-20},{2,7,8,-36},{2,8,1,499122176},{2,8,2,-3},{2,8,3,499122174},{2,8,4,499122165},{2,8,5,-11},{2,8,6,-12},{2,8,7,-36},{2,8,8,499122145},{3,0,3,1},{3,1,6,499122176},{3,1,7,-499122176},{3,1,8,249561089},{3,2,4,-499122176},{3,2,5,249561089},{3,2,6,-499122176},{3,2,7,3},{3,2,8,-499122173},{3,3,0,1},{3,3,3,249561087},{3,3,4,249561089},{3,3,5,499122176},{3,3,6,-1},{3,3,7,-499122173},{3,3,8,249561090},{3,4,2,-499122176},{3,4,3,249561089},{3,4,4,3},{3,4,5,-499122173},{3,4,6,-249561085},{3,4,7,-499122165},{3,4,8,-249561077},{3,5,2,249561089},{3,5,3,499122176},{3,5,4,-499122173},{3,5,5,249561090},{3,5,6,249561089},{3,5,7,-249561077},{3,5,8,-499122169},{3,6,1,499122176},{3,6,2,-499122176},{3,6,3,-1},{3,6,4,-249561085},{3,6,5,249561089},{3,6,6,-249561089},{3,6,7,10},{3,6,8,5},{3,7,1,-499122176},{3,7,2,3},{3,7,3,-499122173},{3,7,4,-499122165},{3,7,5,-249561077},{3,7,6,10},{3,7,7,36},{3,7,8,31},{3,8,1,249561089},{3,8,2,-499122173},{3,8,3,249561090},{3,8,4,-249561077},{3,8,5,-499122169},{3,8,6,5},{3,8,7,31},{3,8,8,-249561067},{4,0,4,1},{4,1,2,1},{4,1,6,-499122174},{4,1,7,499122174},{4,1,8,249561090},{4,2,1,1},{4,2,4,499122174},{4,2,5,249561090},{4,2,6,-499122169},{4,2,7,-3},{4,2,8,-499122167},{4,3,3,249561084},{4,3,4,249561090},{4,3,5,499122176},{4,3,6,3},{4,3,7,-499122167},{4,3,8,249561097},{4,4,0,1},{4,4,2,499122174},{4,4,3,249561090},{4,4,4,-3},{4,4,5,-499122167},{4,4,6,-249561069},{4,4,7,-499122166},{4,4,8,-249561054},{4,5,2,249561090},{4,5,3,499122176},{4,5,4,-499122167},{4,5,5,249561097},{4,5,6,249561100},{4,5,7,-249561054},{4,5,8,-499122145},{4,6,1,-499122174},{4,6,2,-499122169},{4,6,3,3},{4,6,4,-249561069},{4,6,5,249561100},{4,6,6,-249561078},{4,6,7,47},{4,6,8,31},{4,7,1,499122174},{4,7,2,-3},{4,7,3,-499122167},{4,7,4,-499122166},{4,7,5,-249561054},{4,7,6,47},{4,7,7,72},{4,7,8,103},{4,8,1,249561090},{4,8,2,-499122167},{4,8,3,249561097},{4,8,4,-249561054},{4,8,5,-499122145},{4,8,6,31},{4,8,7,103},{4,8,8,-249561002},{5,0,5,1},{5,1,3,1},{5,1,6,-1},{5,1,7,-2},{5,1,8,-4},{5,2,4,-2},{5,2,5,-4},{5,2,6,-6},{5,2,7,-12},{5,2,8,-16},{5,3,1,1},{5,3,3,2},{5,3,4,-4},{5,3,5,-2},{5,3,6,-2},{5,3,7,-16},{5,3,8,-12},{5,4,2,-2},{5,4,3,-4},{5,4,4,-12},{5,4,5,-16},{5,4,6,-18},{5,4,7,-46},{5,4,8,-48},{5,5,0,1},{5,5,2,-4},{5,5,3,-2},{5,5,4,-16},{5,5,5,-12},{5,5,6,-10},{5,5,7,-48},{5,5,8,-36},{5,6,1,-1},{5,6,2,-6},{5,6,3,-2},{5,6,4,-18},{5,6,5,-10},{5,6,6,-6},{5,6,7,-46},{5,6,8,-28},{5,7,1,-2},{5,7,2,-12},{5,7,3,-16},{5,7,4,-46},{5,7,5,-48},{5,7,6,-46},{5,7,7,-144},{5,7,8,-128},{5,8,1,-4},{5,8,2,-16},{5,8,3,-12},{5,8,4,-48},{5,8,5,-36},{5,8,6,-28},{5,8,7,-128},{5,8,8,-92},{6,0,6,1},{6,1,6,-499122176},{6,1,7,499122176},{6,1,8,-249561089},{6,2,4,499122176},{6,2,5,-249561089},{6,2,6,499122176},{6,2,7,-3},{6,2,8,499122173},{6,3,3,-249561087},{6,3,4,-249561089},{6,3,5,-499122176},{6,3,6,1},{6,3,7,499122173},{6,3,8,-249561090},{6,4,2,499122176},{6,4,3,-249561089},{6,4,4,-3},{6,4,5,499122173},{6,4,6,249561085},{6,4,7,499122165},{6,4,8,249561077},{6,5,2,-249561089},{6,5,3,-499122176},{6,5,4,499122173},{6,5,5,-249561090},{6,5,6,-249561089},{6,5,7,249561077},{6,5,8,499122169},{6,6,0,1},{6,6,1,-499122176},{6,6,2,499122176},{6,6,3,1},{6,6,4,249561085},{6,6,5,-249561089},{6,6,6,249561089},{6,6,7,-10},{6,6,8,-5},{6,7,1,499122176},{6,7,2,-3},{6,7,3,499122173},{6,7,4,499122165},{6,7,5,249561077},{6,7,6,-10},{6,7,7,-36},{6,7,8,-31},{6,8,1,-249561089},{6,8,2,499122173},{6,8,3,-249561090},{6,8,4,249561077},{6,8,5,499122169},{6,8,6,-5},{6,8,7,-31},{6,8,8,249561067},{7,0,7,1},{7,1,4,1},{7,1,6,499122175},{7,1,7,-499122174},{7,1,8,249561087},{7,2,2,1},{7,2,4,-499122174},{7,2,5,249561087},{7,2,6,499122172},{7,2,7,2},{7,2,8,499122170},{7,3,3,249561090},{7,3,4,249561087},{7,3,5,499122176},{7,3,6,-2},{7,3,7,499122170},{7,3,8,249561082},{7,4,1,1},{7,4,2,-499122174},{7,4,3,249561087},{7,4,4,2},{7,4,5,499122170},{7,4,6,-249561100},{7,4,7,499122168},{7,4,8,-249561111},{7,5,2,249561087},{7,5,3,499122176},{7,5,4,499122170},{7,5,5,249561082},{7,5,6,249561081},{7,5,7,-249561111},{7,5,8,499122156},{7,6,1,499122175},{7,6,2,499122172},{7,6,3,-2},{7,6,4,-249561100},{7,6,5,249561081},{7,6,6,-249561094},{7,6,7,-29},{7,6,8,-19},{7,7,0,1},{7,7,1,-499122174},{7,7,2,2},{7,7,3,499122170},{7,7,4,499122168},{7,7,5,-249561111},{7,7,6,-29},{7,7,7,-51},{7,7,8,-67},{7,8,1,249561087},{7,8,2,499122170},{7,8,3,249561082},{7,8,4,-249561111},{7,8,5,499122156},{7,8,6,-19},{7,8,7,-67},{7,8,8,-249561143},{8,0,8,1},{8,1,5,1},{8,1,6,2},{8,1,7,2},{8,1,8,5},{8,2,3,1},{8,2,4,2},{8,2,5,5},{8,2,6,7},{8,2,7,12},{8,2,8,17},{8,3,2,1},{8,3,3,-1},{8,3,4,5},{8,3,5,3},{8,3,6,3},{8,3,7,17},{8,3,8,13},{8,4,2,2},{8,4,3,5},{8,4,4,12},{8,4,5,17},{8,4,6,19},{8,4,7,46},{8,4,8,49},{8,5,1,1},{8,5,2,5},{8,5,3,3},{8,5,4,17},{8,5,5,13},{8,5,6,11},{8,5,7,49},{8,5,8,37},{8,6,1,2},{8,6,2,7},{8,6,3,3},{8,6,4,19},{8,6,5,11},{8,6,6,7},{8,6,7,47},{8,6,8,29},{8,7,1,2},{8,7,2,12},{8,7,3,17},{8,7,4,46},{8,7,5,49},{8,7,6,47},{8,7,7,144},{8,7,8,129},{8,8,0,1},{8,8,1,5},{8,8,2,17},{8,8,3,13},{8,8,4,49},{8,8,5,37},{8,8,6,29},{8,8,7,129},{8,8,8,93}}; VTYPE vecP[DIM] = {0,0,0,0,6,6,6,24,20}; */