// QCFium 法 //#pragma GCC target("avx2") // yukicoder と codechef では消す #pragma GCC optimize("O3") // たまにバグる #pragma GCC optimize("unroll-loops") #ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vvvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vvvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline int getb(T set, int i) { return (set >> i) & T(1); } template inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint998244353; //using mint = static_modint<(int)1e9+7>; //using mint = modint; // mint::set_mod(m); using vm = vector; using vvm = vector; using vvvm = vector; using vvvvm = vector; using pim = pair; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) int mute_dump = 0; int frac_print = 0; #if __has_include() namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } #endif inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_math(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); rep(i,9)cout< struct Matrix { int n, m; // 行列のサイズ(n 行 m 列) vector> v; // 行列の成分 // n×m 零行列で初期化する. Matrix(int n, int m) : n(n), m(m), v(n, vector(m)) {} // n×n 単位行列で初期化する. Matrix(int n) : n(n), m(n), v(n, vector(n)) { rep(i, n) v[i][i] = T(1); } // 二次元配列 a[0..n)[0..m) の要素で初期化する. Matrix(const vector>& a) : n(sz(a)), m(sz(a[0])), v(a) {} Matrix() : n(0), m(0) {} // 代入 Matrix(const Matrix&) = default; Matrix& operator=(const Matrix&) = default; // アクセス inline vector const& operator[](int i) const { return v[i]; } inline vector& operator[](int i) {return v[i];} // 入力 friend istream& operator>>(istream& is, Matrix& a) { rep(i, a.n) rep(j, a.m) is >> a.v[i][j]; return is; } // 行の追加 void push_back(const vector& a) { Assert(sz(a) == m); v.push_back(a); n++; } // 行の削除 void pop_back() { Assert(n > 0); v.pop_back(); n--; } // サイズ変更 void resize(int n_) { v.resize(n_); n = n_; } void resize(int n_, int m_) { n = n_; m = m_; v.resize(n); rep(i, n) v[i].resize(m); } // 空か bool empty() const { return min(n, m) == 0; } // 比較 bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; } bool operator!=(const Matrix& b) const { return !(*this == b); } // 加算,減算,スカラー倍 Matrix& operator+=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] += b[i][j]; return *this; } Matrix& operator-=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] -= b[i][j]; return *this; } Matrix& operator*=(const T& c) { rep(i, n) rep(j, m) v[i][j] *= c; return *this; } Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; } Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; } Matrix operator*(const T& c) const { return Matrix(*this) *= c; } friend Matrix operator*(const T& c, const Matrix& a) { return a * c; } Matrix operator-() const { return Matrix(*this) *= T(-1); } // 行列ベクトル積 : O(m n) vector operator*(const vector& x) const { vector y(n); rep(i, n) rep(j, m) y[i] += v[i][j] * x[j]; return y; } // ベクトル行列積 : O(m n) friend vector operator*(const vector& x, const Matrix& a) { vector y(a.m); rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j]; return y; } // 積:O(n^3) Matrix operator*(const Matrix& b) const { Matrix res(n, b.m); rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j]; return res; } Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; } // 累乗:O(n^3 log d) Matrix pow(ll d) const { Matrix res(n), pow2 = *this; while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d >>= 1; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Matrix& a) { rep(i, a.n) { os << "["; rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1]; if (i < a.n - 1) os << "\n"; } return os; } #endif }; //【線形方程式】O(n m min(n, m)) template vector gauss_jordan_elimination(const Matrix& A, const vector& b, vector>* xs = nullptr) { int n = A.n, m = A.m; // v : 拡大係数行列 (A | b) vector> v(n, vector(m + 1)); rep(i, n) rep(j, m) v[i][j] = A[i][j]; rep(i, n) v[i][m] = b[i]; // pivots[i] : 第 i 行のピボットが第何列にあるか vi pivots; // 注目位置を v[i][j] とする. int i = 0, j = 0; while (i < n && j <= m) { // 注目列の下方の行から非 0 成分を見つける. int i2 = i; while (i2 < n && v[i2][j] == T(0)) i2++; // 見つからなかったら注目位置を右に移す. if (i2 == n) { j++; continue; } // 見つかったら第 i 行とその行を入れ替える. if (i != i2) swap(v[i], v[i2]); // v[i][j] をピボットに選択する. pivots.push_back(j); // v[i][j] が 1 になるよう第 i 行全体を v[i][j] で割る. T vij_inv = T(1) / v[i][j]; repi(j2, j, m) v[i][j2] *= vij_inv; // 第 i 行以外の第 j 列の成分が全て 0 になるよう第 i 行を定数倍して減じる. rep(i2, n) { if (v[i2][j] == T(0) || i2 == i) continue; T mul = v[i2][j]; repi(j2, j, m) v[i2][j2] -= v[i][j2] * mul; } // 注目位置を右下に移す. i++; j++; } // 最後に見つかったピボットの位置が第 m 列ならば解なし. if (!pivots.empty() && pivots.back() == m) return vector(); // A x = b の特殊解 x0 の構成(任意定数は全て 0 にする) vector x0(m); int rnk = sz(pivots); rep(i, rnk) x0[pivots[i]] = v[i][m]; // 同次形 A x = 0 の一般解 {x} の基底の構成(任意定数を 1-hot にする) if (xs != nullptr) { xs->clear(); int i = 0; rep(j, m) { if (i < rnk && j == pivots[i]) { i++; continue; } vector x(m); x[j] = T(1); rep(i2, i) x[pivots[i2]] = -v[i2][j]; xs->emplace_back(move(x)); } } return x0; } // https://qiita.com/satoshin_astonish/items/a628ec64f29e77501d07 namespace satoshin { /* 内積 */ double dot(const vl& x, const vd& y) { double z = 0.0; const int n = sz(x); for (int i = 0; i < n; ++i) z += x[i] * y[i]; return z; } double dot(const vd& x, const vd& y) { double z = 0.0; const int n = sz(x); for (int i = 0; i < n; ++i) z += x[i] * y[i]; return z; } double dot(const vl& x, const vl& y) { double z = 0.0; const int n = sz(x); for (int i = 0; i < n; ++i) z += x[i] * y[i]; return z; } /* Gram-Schmidtの直交化 */ tuple Gram_Schmidt_squared(const vvl& b) { const int n = sz(b), m = sz(b[0]); int i, j, k; vd B(n); vvd GSOb(n, vd(m)), mu(n, vd(n)); for (i = 0; i < n; ++i) { mu[i][i] = 1.0; for (j = 0; j < m; ++j) GSOb[i][j] = (double)b[i][j]; for (j = 0; j < i; ++j) { mu[i][j] = dot(b[i], GSOb[j]) / dot(GSOb[j], GSOb[j]); for (k = 0; k < m; ++k) GSOb[i][k] -= mu[i][j] * GSOb[j][k]; } B[i] = dot(GSOb[i], GSOb[i]); } return std::forward_as_tuple(B, mu); } /* 部分サイズ基底簡約 */ void SizeReduce(vvl& b, vvd& mu, const int i, const int j) { ll q; const int m = sz(b[0]); if (mu[i][j] > 0.5 || mu[i][j] < -0.5) { q = (ll)round(mu[i][j]); for (int k = 0; k < m; ++k) b[i][k] -= q * b[j][k]; for (int k = 0; k <= j; ++k) mu[i][k] -= mu[j][k] * q; } } /* LLL基底簡約 */ void LLLReduce(vvl& b, const float d = 0.99) { const int n = sz(b), m = sz(b[0]); int j, i, h; double t, nu, BB, C; auto [B, mu] = Gram_Schmidt_squared(b); ll tmp; for (int k = 1; k < n;) { h = k - 1; for (j = h; j > -1; --j) SizeReduce(b, mu, k, j); //Checks if the lattice basis matrix b satisfies Lovasz condition. if (k > 0 && B[k] < (d - mu[k][h] * mu[k][h]) * B[h]) { for (i = 0; i < m; ++i) { tmp = b[h][i]; b[h][i] = b[k][i]; b[k][i] = tmp; } nu = mu[k][h]; BB = B[k] + nu * nu * B[h]; C = 1.0 / BB; mu[k][h] = nu * B[h] * C; B[k] *= B[h] * C; B[h] = BB; for (i = 0; i <= k - 2; ++i) { t = mu[h][i]; mu[h][i] = mu[k][i]; mu[k][i] = t; } for (i = k + 1; i < n; ++i) { t = mu[i][k]; mu[i][k] = mu[i][h] - nu * t; mu[i][h] = t + mu[k][h] * mu[i][k]; } --k; } else ++k; } } } vl LLLReduce(const vvm& lat_) { int h = sz(lat_); int w = sz(lat_[0]); vvl lat(h + w, vl(w)); rep(i, h) rep(j, w) lat[i][j] = lat_[i][j].val(); rep(i, w) lat[h + i][i] = mint::mod(); h = sz(lat); satoshin::LLLReduce(lat); // L1 ノルムをチェックする. ll sum = 0; rep(j, w) sum += abs(lat[0][j]); dump("L1:", sum); // L1 ノルムが大きいものは捨てる. repi(i, 1, h - 1) { ll sum2 = 0; rep(j, w) sum2 += abs(lat[i][j]); if (sum2 > sum * 10.) { lat.resize(i); h = i; break; } } dump("lat:"); frac_print = 1; dumpel(lat); frac_print = 0; return lat[0]; } // 変数係数線形漸化式の係数を計算し,埋め込み用のコードを出力する. vvm embed_coefs_1D(const vm& seq, int TRM_ini = 1, int DEG_ini = 1, bool LLL = false) { int n = sz(seq); // TRM 項間の,係数多項式の次数 DEG 未満の変数係数線形漸化式 // Σt∈[0..TRM) Σd∈[0..DEG) coefs[t][d] (i-TRM+1+t)^d seq[i-t] = 0 // を探す. int TRM = TRM_ini, DEG = DEG_ini; while (1) { //dump("TRM:", TRM, "DEG:", DEG); int h = n - TRM + 1; int w = TRM * DEG; // 行列方程式 A x = 0 を解いて一般解の基底 xs を求める. Matrix A(h, w); repi(i, TRM - 1, n - 1) { rep(t, TRM) rep(d, DEG) { A[i - TRM + 1][t * DEG + d] = mint(i - TRM + 1 + t).pow(d) * seq[i - t]; } } vvm xs; gauss_jordan_elimination(A, vm(h), &xs); // 自明解 x = 0 しか存在しない場合は失敗. if (xs.empty()) { if (DEG == 1) { DEG = TRM + DEG; TRM = 1; } else { TRM++; DEG--; } continue; } dump("TRM:", TRM, "DEG:", DEG); dump("#eq:", h, "#var:", w); dump("xs:"); frac_print = 1; dumpel(xs); frac_print = 0; // 変数係数線形漸化式の係数 vvm coefs(TRM, vm(DEG)); if (LLL) { // A x = 0 の解空間の基底に LLL を適用する. // 性能はいまいちなのでガチでやるなら Mathematica を使う. auto lat0 = LLLReduce(xs); rep(t, TRM) rep(d, DEG) coefs[t][d] = lat0[t * DEG + d]; } else { rep(t, TRM) rep(d, DEG) coefs[t][d] = xs.back()[t * DEG + d]; } return coefs; } return vvm(); } // 変数係数線形漸化式の係数を計算し,埋め込み用のコードを出力する. pair embed_coefs_2D(const vvm& tbl, int DEG1_ini = 1, int TRM2_ini = 1, int DEG2_ini = 1, bool LLL = false) { int n1 = sz(tbl); // TRM 項間の,係数多項式の次数 DEG 未満の変数係数線形漸化式 // Σt1∈[0..TRM1) Σd1∈[0..DEG1) Σt2∈[0..TRM2) Σd2∈[0..DEG2) // c[t1][d1][t2][d2] (i1-TRM1+1+t1)^d1 (i2-TRM2+1+t2)^d2 tbl[i1-t1][i2-t2] = 0 // を探す. int TRM1 = 1, DEG1 = DEG1_ini; int TRM2 = TRM2_ini, DEG2 = DEG2_ini; int P_MAX = max({ TRM1, DEG1, TRM2, DEG2 }); while (1) { //dump("TRM1:", TRM1, "DEG1:", DEG1, "TRM2:", TRM2, "DEG2:", DEG2); int w = TRM1 * DEG1 * TRM2 * DEG2; // 行列方程式 A x = 0 を解いて一般解の基底 xs を求める. Matrix A(0, w); repi(i1, TRM1 - 1, n1 - 1) { int n2 = sz(tbl[i1]); repi(i2, TRM2 - 1, n2 - 1) { vm a(w); bool valid = true; rep(t1, TRM1) rep(d1, DEG1) rep(t2, TRM2) rep(d2, DEG2) { if (i2 - t2 >= sz(tbl[i1 - t1])) { valid = false; break; } int idx = ((t1 * DEG1 + d1) * TRM2 + t2) * DEG2 + d2; mint pow_i = mint(i1 - TRM1 + 1 + t1).pow(d1) * mint(i2 - TRM2 + 1 + t2).pow(d2); a[idx] = pow_i * tbl[i1 - t1][i2 - t2]; } if (valid) A.push_back(a); } } int h = A.n; vvm xs; gauss_jordan_elimination(A, vm(h), &xs); // 自明解 x = 0 しか存在しない場合は失敗. if (xs.empty()) { while (1) { DEG2++; if (DEG2 > P_MAX) { DEG2 = 1; TRM2++; }; if (TRM2 > P_MAX) { TRM2 = 1; DEG1++; }; if (DEG1 > P_MAX) { DEG1 = 1; TRM1++; }; if (TRM1 > 1) { TRM1 = 1; P_MAX++; }; if (max({ TRM1, DEG1, TRM2, DEG2 }) == P_MAX) break; } continue; } dump("TRM1:", TRM1, "DEG1:", DEG1, "TRM2:", TRM2, "DEG2:", DEG2); dump("#eq:", h, "#var:", w); dump("xs:"); frac_print = 1; dumpel(xs); frac_print = 0; // 変数係数線形漸化式の係数 vvvm coefs(DEG1, vvm(TRM2, vm(DEG2))); if (LLL) { // A x = 0 の解空間の基底に LLL を適用する. // 性能はいまいちなのでガチでやるなら Mathematica を使う. auto lat0 = LLLReduce(xs); rep(d1, DEG1) rep(t2, TRM2) rep(d2, DEG2) { int idx = (d1 * TRM2 + t2) * DEG2 + d2; coefs[d1][t2][d2] = lat0[idx]; } } else { rep(d1, DEG1) rep(t2, TRM2) rep(d2, DEG2) { int idx = (d1 * TRM2 + t2) * DEG2 + d2; coefs[d1][t2][d2] = xs.back()[idx]; } } // i1 方向への初項の延長 dump("------- embed_coefs_1D -------"); vvvm coefs1(TRM2 - 1); rep(i2, TRM2 - 1) { dump("--- i2:", i2, "---"); vm seq; int offset = 0; rep(i1, sz(tbl)) { if (sz(tbl[i1]) <= i2) { if (offset == i1) { offset = i1 + 1; continue; } else { break; } } seq.emplace_back(tbl[i1][i2]); } coefs1[i2] = embed_coefs_1D(seq, 1, 1, LLL); } #ifdef _MSC_VER // 埋め込み用の文字列を出力する. auto to_signed_string = [](mint x) { int v = x.val(); int mod = mint::mod(); if (v > mod / 2) v -= mod; return to_string(v); }; string eb; eb += "\n"; eb += "constexpr int TRM1 = "; eb += to_string(TRM1); eb += ";\n"; eb += "constexpr int DEG1 = "; eb += to_string(DEG1); eb += ";\n"; eb += "constexpr int TRM2 = "; eb += to_string(TRM2); eb += ";\n"; eb += "constexpr int DEG2 = "; eb += to_string(DEG2); eb += ";\n\n"; eb += "vvm coefs1[TRM2 - 1] = {\n"; rep(i2, TRM2 - 1) { eb += "{"; rep(t, sz(coefs1[i2])) { eb += "{"; rep(d, sz(coefs1[i2][t])) { eb += to_signed_string(coefs1[i2][t][d]) + ","; } eb.pop_back(); eb += "},"; } eb.pop_back(); eb += "},\n"; } eb.pop_back(); eb.pop_back(); eb += "};\n\n"; eb += "mint coefs[DEG1][TRM2][DEG2] = {\n"; rep(d1, DEG1) { eb += "{"; rep(t2, TRM2) { eb += "{"; rep(d2, DEG2) { eb += to_signed_string(coefs[d1][t2][d2]) + ","; } eb.pop_back(); eb += "},"; } eb.pop_back(); eb += "},\n"; } eb.pop_back(); eb.pop_back(); eb += "};\n"; cout << eb; #endif return { coefs1, coefs }; } return pair(); } // 数列 seq を延長して seq[0..N] にする. void solve_1D(vm& seq, int N, vvm coefs) { int TRM = sz(coefs); int DEG = sz(coefs[0]); int n = sz(seq); seq.resize(N + 1); // TRM 項間の,係数多項式の次数 DEG 未満の変数係数線形漸化式 // Σt∈[0..TRM) Σd∈[0..DEG) coefs[t][f] (i-TRM+1+t)^d a[i-t] = 0 // を用いて数列 a を延長する. repi(i, n, N) { mint dnm = 0; mint pow_i = 1; rep(d, DEG) { dnm += coefs[0][d] * pow_i; pow_i *= i - TRM + 1; } mint num = 0; repi(t, 1, TRM - 1) { mint pow_i = 1; rep(d, DEG) { num += coefs[t][d] * pow_i * seq[i - t]; pow_i *= i - TRM + 1 + t; } } // dnm * a[i] + num = 0 を解く.分母 0 に注意! if (dnm == 0) { dump("DIVISION BY ZERO at i =", i); Assert(dnm != 0); } seq[i] = -num / dnm; } } // 2 次元数列 tbl を元に seq = tbl[N][0..M] を計算する. vm solve_2D(const vvm& tbl, int N, int M, vvvm coefs1, vvvm coefs) { int TRM1 = 1; int DEG1 = sz(coefs); int TRM2 = sz(coefs[0]); int DEG2 = sz(coefs[0][0]); vm res(TRM2 - 1); // i1 方向に tbl[..][0], ..., tbl[..][TRM2-2] を延長する. dump("------- solve_1D -------"); rep(i2, TRM2 - 1) { dump("--- i2:", i2, "---"); vm seq; int offset = 0; rep(i1, sz(tbl)) { if (sz(tbl[i1]) <= i2) { if (offset == i1) { offset = i1 + 1; continue; } else { break; } } seq.emplace_back(tbl[i1][i2]); } if (N - offset < 0) continue; solve_1D(seq, N - offset, coefs1[i2]); //dump("seq:", seq); res[i2] = seq[N - offset]; } vm pow_i1s(DEG1); pow_i1s[0] = 1; repi(d1, 1, DEG1 - 1) pow_i1s[d1] = pow_i1s[d1 - 1] * (N - TRM1 + 1); // i2 方向に tbl[N][..] を延長する. res.resize(M + 1); repi(i2, TRM2 - 1, M) { mint dnm = 0; mint pow_i2 = 1; rep(d2, DEG2) { rep(d1, DEG1) { dnm += coefs[d1][0][d2] * pow_i1s[d1] * pow_i2; } pow_i2 *= i2 - TRM2 + 1; } mint num = 0; repi(t2, 1, TRM2 - 1) { mint pow_i2 = 1; rep(d2, DEG2) { rep(d1, DEG1) { num += coefs[d1][t2][d2] * pow_i1s[d1] * pow_i2 * res[i2 - t2]; } pow_i2 *= i2 - TRM2 + 1 + t2; } } // dnm * tbl[N][i2] + num = 0 を解く.分母 0 に注意! if (dnm == 0) { dump("DIVISION BY ZERO at i1 =", N, "i2 =", i2); Assert(dnm != 0); } res[i2] = -num / dnm; } return res; } // 2 次元数列 tbl を元に seq = tbl[N][0..M] を計算する. vm solve_2D(const vvm& tbl, int N, int M) { // --------------- embed_coefs() からの出力を貼る ---------------- constexpr int TRM1 = 1; constexpr int DEG1 = 3; constexpr int TRM2 = 3; constexpr int DEG2 = 3; vvm coefs1[TRM2 - 1] = { {{0,499122176,499122176},{-1,0,1}}, {{0,-499122176,499122176},{0,-2,1}} }; mint coefs[DEG1][TRM2][DEG2] = { {{-10,-11,-3},{0,10,10},{6,1,-7}}, {{4,-499122175,499122176},{-10,499122167,-499122175},{6,8,-1}}, {{-499122176,-499122176,0},{499122176,499122175,0},{0,1,0}} }; // -------------------------------------------------------------- vm res(TRM2 - 1); // i1 方向に tbl[..][0], ..., tbl[..][TRM2-2] を延長する. dump("------- solve_1D -------"); rep(i2, TRM2 - 1) { dump("--- i2:", i2, "---"); vm seq; int offset = 0; rep(i1, sz(tbl)) { if (sz(tbl[i1]) <= i2) { if (offset == i1) { offset = i1 + 1; continue; } else { break; } } seq.emplace_back(tbl[i1][i2]); } if (N - offset < 0) continue; solve_1D(seq, N - offset, coefs1[i2]); //dump("seq:", seq); res[i2] = seq[N - offset]; } vm pow_i1s(DEG1); pow_i1s[0] = 1; repi(d1, 1, DEG1 - 1) pow_i1s[d1] = pow_i1s[d1 - 1] * (N - TRM1 + 1); // i2 方向に tbl[N][..] を延長する. res.resize(M + 1); repi(i2, TRM2 - 1, M) { mint dnm = 0; mint pow_i2 = 1; rep(d2, DEG2) { rep(d1, DEG1) { dnm += coefs[d1][0][d2] * pow_i1s[d1] * pow_i2; } pow_i2 *= i2 - TRM2 + 1; } mint num = 0; repi(t2, 1, TRM2 - 1) { mint pow_i2 = 1; rep(d2, DEG2) { rep(d1, DEG1) { num += coefs[d1][t2][d2] * pow_i1s[d1] * pow_i2 * res[i2 - t2]; } pow_i2 *= i2 - TRM2 + 1 + t2; } } // dnm * tbl[N][i2] + num = 0 を解く.分母 0 に注意! if (dnm == 0) { dump("DIVISION BY ZERO at i1 =", N, "i2 =", i2); Assert(dnm != 0); } res[i2] = -num / dnm; } return res; } vvm tbl = { {0,0,0,0,0,0,0,0,0,0}, {1,0,0,0,0,0,0,0,0,0}, {3,3,0,0,0,0,0,0,0,0}, {8,9,8,0,0,0,0,0,0,0}, {20,24,24,20,0,0,0,0,0,0}, {48,60,64,60,48,0,0,0,0,0}, {112,144,160,160,144,112,0,0,0,0}, {256,336,384,400,384,336,256,0,0,0}, {576,768,896,960,960,896,768,576,0,0}, {1280,1728,2048,2240,2304,2240,2048,1728,1280,0} }; int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); //【方法】 // 愚直を書いて集めたデータをもとに変数係数線形漸化式を復元する. //【使い方】 // 1. vm tbl = naive() を実装する. // 2. coefs = embed_coefs(tbl, TRM1_ini, DEG1_ini, TRM2_ini, DEG2_ini, LLL); を実行する. // 3. 出力を solve() 内に貼る. // 4. solve(tbl, n, m, [coefs]) で勝手に tbl[n][0..m] を求めてくれる. // 愚直解を用意する.再計算がイヤなら埋め込む. auto tbl = naive(); // 愚直解を渡して変数係数線形漸化式の係数を得る.再計算がイヤなら埋め込む. // 引数:tbl, DEG1_ini, TRM2_ini, DEG2_ini, LLL? auto [coefs1, coefs] = embed_coefs_2D(tbl, 1, 1, 1, 0); int n; cin >> n; // 2 次元数列 tbl を元に seq = tbl[n][0..m] を計算する. // 整理すると綺麗な式になるなら FullSimplify[] すると速くなる. auto seq = solve_2D(tbl, n, n-1, coefs1, coefs); // auto seq = solve_2D(tbl, n, m); //dump(seq); vm a(n); cin >> a; mint res = 0; rep(i, n) res += a[i] * seq[i]; EXIT(res); } /* vvm tbl = { {0,0,0,0,0,0,0,0,0,0}, {1,0,0,0,0,0,0,0,0,0}, {3,3,0,0,0,0,0,0,0,0}, {8,9,8,0,0,0,0,0,0,0}, {20,24,24,20,0,0,0,0,0,0}, {48,60,64,60,48,0,0,0,0,0}, {112,144,160,160,144,112,0,0,0,0}, {256,336,384,400,384,336,256,0,0,0}, {576,768,896,960,960,896,768,576,0,0}, {1280,1728,2048,2240,2304,2240,2048,1728,1280,0}}; TRM1: 1 DEG1: 3 TRM2: 3 DEG2: 3 #eq: 80 #var: 27 xs: 0: 4 6 2 0 -5 -5 -2 -1 3 -4 -3 0 5 7 0 -1 -4 0 1 0 0 -2 0 0 1 0 0 1: -10 -11 -3 0 10 10 6 1 -7 4 3/2 -1/2 -10 -19/2 3/2 6 8 -1 1/2 1/2 0 -1/2 -3/2 0 0 1 0 ------- embed_coefs_1D ------- --- i2: 0 --- TRM: 2 DEG: 3 #eq: 9 #var: 6 xs: 0: 0 -1/2 -1/2 -1 0 1 --- i2: 1 --- TRM: 2 DEG: 3 #eq: 9 #var: 6 xs: 0: 0 1/2 -1/2 0 -2 1 constexpr int TRM1 = 1; constexpr int DEG1 = 3; constexpr int TRM2 = 3; constexpr int DEG2 = 3; vvm coefs1[TRM2 - 1] = { {{0,499122176,499122176},{-1,0,1}}, {{0,-499122176,499122176},{0,-2,1}}}; mint coefs[DEG1][TRM2][DEG2] = { {{-10,-11,-3},{0,10,10},{6,1,-7}}, {{4,-499122175,499122176},{-10,499122167,-499122175},{6,8,-1}}, {{-499122176,-499122176,0},{499122176,499122175,0},{0,1,0}}}; */