#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vvvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vvvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline int getb(T set, int i) { return (set >> i) & T(1); } template inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint998244353; //using mint = static_modint<(int)1e9+7>; //using mint = modint; // mint::set_mod(m); using vm = vector; using vvm = vector; using vvvm = vector; using vvvvm = vector; using pim = pair; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) int mute_dump = 0; int frac_print = 0; #if __has_include() namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } #endif inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_math(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); rep(i,9)cout< 0); Assert(n <= n_max); return fac[n - 1] * fac_inv[n]; } // 1/n を返す(n < 0 も可) mint inv_neg(int n) const { Assert(n != 0); Assert(abs(n) <= n_max); if (n > 0) return fac[n - 1] * fac_inv[n]; else return -fac[-n - 1] * fac_inv[-n]; } // 順列の数 nPr を返す. mint perm(int n, int r) const { // verify : https://atcoder.jp/contests/abc172/tasks/abc172_e Assert(n <= n_max); if (r < 0 || n - r < 0) return 0; return fac[n] * fac_inv[n - r]; } // 順列の数 nPr の逆数を返す. mint perm_inv(int n, int r) const { // verify : https://yukicoder.me/problems/no/3139 Assert(n <= n_max); Assert(0 <= r); Assert(r <= n); return fac_inv[n] * fac[n - r]; } // 二項係数 nCr を返す. mint bin(int n, int r) const { // verify : https://judge.yosupo.jp/problem/binomial_coefficient_prime_mod Assert(n <= n_max); if (r < 0 || n - r < 0) return 0; return fac[n] * fac_inv[r] * fac_inv[n - r]; } // 二項係数の逆数 1/nCr を返す. mint bin_inv(int n, int r) const { // verify : https://www.codechef.com/problems/RANDCOLORING Assert(n <= n_max); Assert(r >= 0); Assert(n - r >= 0); return fac_inv[n] * fac[r] * fac[n - r]; } // 多項係数 nC[rs] を返す. mint mul(const vi& rs) const { // verify : https://yukicoder.me/problems/no/2141 if (rs.empty()) return 1; if (*min_element(all(rs)) < 0) return 0; int n = accumulate(all(rs), 0); Assert(n <= n_max); mint res = fac[n]; repe(r, rs) res *= fac_inv[r]; return res; } // 重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする) mint hom(int n, int r) { // verify : https://mojacoder.app/users/riantkb/problems/toj_ex_2 if (n == 0) return (int)(r == 0); if (r < 0 || n - 1 < 0) return 0; Assert(n + r - 1 <= n_max); return fac[n + r - 1] * fac_inv[r] * fac_inv[n - 1]; } // 負の二項係数 nCr を返す(n ≦ 0, r ≧ 0) mint neg_bin(int n, int r) { // verify : https://atcoder.jp/contests/abc345/tasks/abc345_g if (n == 0) return (int)(r == 0); if (r < 0 || -n - 1 < 0) return 0; Assert(-n + r - 1 <= n_max); return (r & 1 ? -1 : 1) * fac[-n + r - 1] * fac_inv[r] * fac_inv[-n - 1]; } // ポッホハマー記号 x^(n) を返す(n ≧ 0) mint pochhammer(int x, int n) { // verify : https://atcoder.jp/contests/agc070/tasks/agc070_c int x2 = x + n - 1; if (x <= 0 && 0 <= x2) return 0; if (x > 0) { Assert(x2 <= n_max); return fac[x2] * fac_inv[x - 1]; } else { Assert(-x <= n_max); return (n & 1 ? -1 : 1) * fac[-x] * fac_inv[-x2 - 1]; } } // ポッホハマー記号の逆数 1/x^(n) を返す(n ≧ 0) mint pochhammer_inv(int x, int n) { // verify : https://atcoder.jp/contests/agc070/tasks/agc070_c int x2 = x + n - 1; Assert(!(x <= 0 && 0 <= x2)); if (x > 0) { Assert(x2 <= n_max); return fac_inv[x2] * fac[x - 1]; } else { Assert(-x <= n_max); return (n & 1 ? -1 : 1) * fac_inv[-x] * fac[-x2 - 1]; } } }; Factorial_mint fm((int)1e5 + 10); // (i1, i2, i3) = (n1, n2, n3) に対する愚直解を返す. mint naive_123(int i0, int i1, int i2) { int a1 = i0 + 1; int a2 = a1 + i1 + 1; int n = a2 + i2 + 1; if (a1 == a2) return fm.fact(n) * n; if (a1 > a2) swap(a1, a2); // とりあえず多項式オーダーにした int cL = a1; int cM = a2 - a1; int cR = n - a2; //dump(cL, cM, cR); mint res = 0; //dump("a2 より大,不動 :"); repi(i, 1, n) { repi(cLl, 0, cL) repi(cMl, 0, cM) { int cLr = cL - cLl; int cMr = cM - cMl; int cRl = (i - 1) - cLl - cMl; int cRr = (n - i) - cLr - cMr; if (cRl < 0 || cRr < 0) continue; if (cMl + cRl < cLr) continue; if (cRl < cLr + cMr) continue; mint pos = fm.mul({ cLl, cMl, cRl }) * fm.mul({ cLr, cMr, cRr }); mint val = fm.fact(cL) * fm.fact(cM) * fm.fact(cR - 1); //dump("i:", i, "c:", cLl, cMl, cRl, cLr, cMr, cRr, ":", pos, val); res += pos * val * cR; } } //dump("a2 より大,移動 :"); repi(i, 1, n) repi(j, i + 1, n) { repi(cLl, 0, cL) { int cMl = 0; int cRl = (i - 1) - cLl - cMl; int cLr = cRl; int cMr = 0; int cRr = (n - j) - cLr - cMr; int cLm = (cL - 1) - cLl - cLr; int cMm = cM - cMl - cMr; int cRm = (cR - 1) - cRl - cRr; if (cRl < 0 || cRr < 0 || cLm < 0 || cMm < 0 || cRm < 0) continue; mint pos = fm.mul({ cLl, cMl, cRl }) * fm.mul({ cLm, cMm, cRm }) * fm.mul({ cLr, cMr, cRr }); mint val = fm.fact(cL - 1) * fm.fact(cM) * fm.fact(cR - 1); //dump("i:", i, "j:", j, "c:", cLl, cMl, cRl, cLm, cMm, cRm, cLr, cMr, cRr, ":", pos, val); res += pos * val * cL * cR; } } //dump("a1 より大,a2 以下,不動 :"); repi(i, 1, n) { repi(cLl, 0, cL) repi(cMl, 0, cM - 1) { int cLr = cL - cLl; int cMr = (cM - 1) - cMl; int cRl = (i - 1) - cLl - cMl; int cRr = (n - i) - cLr - cMr; if (cRl < 0 || cRr < 0) continue; if (cMl + cRl < cLr) continue; if (cRl > cLr + cMr) continue; mint pos = fm.mul({ cLl, cMl, cRl }) * fm.mul({ cLr, cMr, cRr }); mint val = fm.fact(cL) * fm.fact(cM - 1) * fm.fact(cR); //dump("i:", i, "c:", cLl, cMl, cRl, cLr, cMr, cRr, ":", pos, val); res += pos * val * cM; } } { swap(a1, a2); a1 = n - a1; a2 = n - a2; //dump(a1, a2); cL = a1; cM = a2 - a1; cR = n - a2; //dump("a2 より大,不動 :"); repi(i, 1, n) { repi(cLl, 0, cL) repi(cMl, 0, cM) { int cLr = cL - cLl; int cMr = cM - cMl; int cRl = (i - 1) - cLl - cMl; int cRr = (n - i) - cLr - cMr; if (cRl < 0 || cRr < 0) continue; if (cMl + cRl < cLr) continue; if (cRl < cLr + cMr) continue; mint pos = fm.mul({ cLl, cMl, cRl }) * fm.mul({ cLr, cMr, cRr }); mint val = fm.fact(cL) * fm.fact(cM) * fm.fact(cR - 1); //dump("i:", i, "c:", cLl, cMl, cRl, cLr, cMr, cRr, ":", pos, val); res += pos * val * cR; } } //dump("a2 より大,移動 :"); repi(i, 1, n) repi(j, i + 1, n) { repi(cLl, 0, cL) { int cMl = 0; int cRl = (i - 1) - cLl - cMl; int cLr = cRl; int cMr = 0; int cRr = (n - j) - cLr - cMr; int cLm = (cL - 1) - cLl - cLr; int cMm = cM - cMl - cMr; int cRm = (cR - 1) - cRl - cRr; if (cRl < 0 || cRr < 0 || cLm < 0 || cMm < 0 || cRm < 0) continue; mint pos = fm.mul({ cLl, cMl, cRl }) * fm.mul({ cLm, cMm, cRm }) * fm.mul({ cLr, cMr, cRr }); mint val = fm.fact(cL - 1) * fm.fact(cM) * fm.fact(cR - 1); //dump("i:", i, "j:", j, "c:", cLl, cMl, cRl, cLm, cMm, cRm, cLr, cMr, cRr, ":", pos, val); res += pos * val * cL * cR; } } } return res; } // (i1, i2) = (n1, n2) に対する愚直解を返す. vm naive_12(int n1, int n2) { vm seq; return seq; } // i1 = n1 に対する愚直解を返す. vvm naive_1(int n1) { vvm tbl; return tbl; } // (i1,i2,i3)∈[0..n1)×[0..n2)×[0..n3) に対する愚直解を返す. vvvm naive() { int N1 = 14, N2 = 14, N3 = 14; vvvm box; rep(i1, N1) { vvm tbl; rep(i2, N2) { vm seq; rep(i3, N3) { seq.push_back(naive_123(i1, i2, i3)); } tbl.push_back(seq); } box.push_back(tbl); } //vvvm box(N1, vvm(N2, vm(N3))); //rep(i1, N1) { // dump("i1:", i1); // rep(i2, N2) rep(i3, N3) { // box[i1][i2][i3] = naive_123(i1, i2, i3); // } //} //vvvm box(N1, vvm(N2)); //rep(i1, N1) { // dump("i1:", i1); // rep(i2, N2) { // box[i1][i2] = naive_12(i1, i2); // } //} //vvvm box(N1); //rep(i1, N1) { // dump("i1:", i1); // box[i1] = naive_1(i1); //} #ifdef _MSC_VER // 埋め込み用 string eb; eb += "vvvm box = {\n"; rep(i1, sz(box)) { eb += "{"; rep(i2, sz(box[i1])) { eb += "{"; rep(i3, sz(box[i1][i2])) { eb += to_string(box[i1][i2][i3].val()) + ","; } if (eb.back() == ',') eb.pop_back(); eb += "},"; } if (eb.back() == ',') eb.pop_back(); eb += "},\n"; } eb.pop_back(); eb.pop_back(); eb += "};\n\n"; cout << eb; #endif return box; } //【行列】 template struct Matrix { int n, m; // 行列のサイズ(n 行 m 列) vector> v; // 行列の成分 // n×m 零行列で初期化する. Matrix(int n, int m) : n(n), m(m), v(n, vector(m)) {} // n×n 単位行列で初期化する. Matrix(int n) : n(n), m(n), v(n, vector(n)) { rep(i, n) v[i][i] = T(1); } // 二次元配列 a[0..n)[0..m) の要素で初期化する. Matrix(const vector>& a) : n(sz(a)), m(sz(a[0])), v(a) {} Matrix() : n(0), m(0) {} // 代入 Matrix(const Matrix&) = default; Matrix& operator=(const Matrix&) = default; // アクセス inline vector const& operator[](int i) const { return v[i]; } inline vector& operator[](int i) {return v[i];} // 入力 friend istream& operator>>(istream& is, Matrix& a) { rep(i, a.n) rep(j, a.m) is >> a.v[i][j]; return is; } // 行の追加 void push_back(const vector& a) { Assert(sz(a) == m); v.push_back(a); n++; } // 行の削除 void pop_back() { Assert(n > 0); v.pop_back(); n--; } // サイズ変更 void resize(int n_) { v.resize(n_); n = n_; } void resize(int n_, int m_) { n = n_; m = m_; v.resize(n); rep(i, n) v[i].resize(m); } // 空か bool empty() const { return min(n, m) == 0; } // 比較 bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; } bool operator!=(const Matrix& b) const { return !(*this == b); } // 加算,減算,スカラー倍 Matrix& operator+=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] += b[i][j]; return *this; } Matrix& operator-=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] -= b[i][j]; return *this; } Matrix& operator*=(const T& c) { rep(i, n) rep(j, m) v[i][j] *= c; return *this; } Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; } Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; } Matrix operator*(const T& c) const { return Matrix(*this) *= c; } friend Matrix operator*(const T& c, const Matrix& a) { return a * c; } Matrix operator-() const { return Matrix(*this) *= T(-1); } // 行列ベクトル積 : O(m n) vector operator*(const vector& x) const { vector y(n); rep(i, n) rep(j, m) y[i] += v[i][j] * x[j]; return y; } // ベクトル行列積 : O(m n) friend vector operator*(const vector& x, const Matrix& a) { vector y(a.m); rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j]; return y; } // 積:O(n^3) Matrix operator*(const Matrix& b) const { Matrix res(n, b.m); rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j]; return res; } Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; } // 累乗:O(n^3 log d) Matrix pow(ll d) const { Matrix res(n), pow2 = *this; while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d >>= 1; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Matrix& a) { rep(i, a.n) { os << "["; rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1]; if (i < a.n - 1) os << "\n"; } return os; } #endif }; //【線形方程式】O(n m min(n, m)) template vector gauss_jordan_elimination(const Matrix& A, const vector& b, vector>* xs = nullptr) { int n = A.n, m = A.m; // v : 拡大係数行列 (A | b) vector> v(n, vector(m + 1)); rep(i, n) rep(j, m) v[i][j] = A[i][j]; rep(i, n) v[i][m] = b[i]; // pivots[i] : 第 i 行のピボットが第何列にあるか vi pivots; // 注目位置を v[i][j] とする. int i = 0, j = 0; while (i < n && j <= m) { // 注目列の下方の行から非 0 成分を見つける. int i2 = i; while (i2 < n && v[i2][j] == T(0)) i2++; // 見つからなかったら注目位置を右に移す. if (i2 == n) { j++; continue; } // 見つかったら第 i 行とその行を入れ替える. if (i != i2) swap(v[i], v[i2]); // v[i][j] をピボットに選択する. pivots.push_back(j); // v[i][j] が 1 になるよう第 i 行全体を v[i][j] で割る. T vij_inv = T(1) / v[i][j]; repi(j2, j, m) v[i][j2] *= vij_inv; // 第 i 行以外の第 j 列の成分が全て 0 になるよう第 i 行を定数倍して減じる. rep(i2, n) { if (v[i2][j] == T(0) || i2 == i) continue; T mul = v[i2][j]; repi(j2, j, m) v[i2][j2] -= v[i][j2] * mul; } // 注目位置を右下に移す. i++; j++; } // 最後に見つかったピボットの位置が第 m 列ならば解なし. if (!pivots.empty() && pivots.back() == m) return vector(); // A x = b の特殊解 x0 の構成(任意定数は全て 0 にする) vector x0(m); int rnk = sz(pivots); rep(i, rnk) x0[pivots[i]] = v[i][m]; // 同次形 A x = 0 の一般解 {x} の基底の構成(任意定数を 1-hot にする) if (xs != nullptr) { xs->clear(); int i = 0; rep(j, m) { if (i < rnk && j == pivots[i]) { i++; continue; } vector x(m); x[j] = T(1); rep(i2, i) x[pivots[i2]] = -v[i2][j]; xs->emplace_back(move(x)); } } return x0; } // https://qiita.com/satoshin_astonish/items/a628ec64f29e77501d07 namespace satoshin { /* 内積 */ double dot(const vl& x, const vd& y) { double z = 0.0; const int n = sz(x); for (int i = 0; i < n; ++i) z += x[i] * y[i]; return z; } double dot(const vd& x, const vd& y) { double z = 0.0; const int n = sz(x); for (int i = 0; i < n; ++i) z += x[i] * y[i]; return z; } double dot(const vl& x, const vl& y) { double z = 0.0; const int n = sz(x); for (int i = 0; i < n; ++i) z += x[i] * y[i]; return z; } /* Gram-Schmidtの直交化 */ tuple Gram_Schmidt_squared(const vvl& b) { const int n = sz(b), m = sz(b[0]); int i, j, k; vd B(n); vvd GSOb(n, vd(m)), mu(n, vd(n)); for (i = 0; i < n; ++i) { mu[i][i] = 1.0; for (j = 0; j < m; ++j) GSOb[i][j] = (double)b[i][j]; for (j = 0; j < i; ++j) { mu[i][j] = dot(b[i], GSOb[j]) / dot(GSOb[j], GSOb[j]); for (k = 0; k < m; ++k) GSOb[i][k] -= mu[i][j] * GSOb[j][k]; } B[i] = dot(GSOb[i], GSOb[i]); } return std::forward_as_tuple(B, mu); } /* 部分サイズ基底簡約 */ void SizeReduce(vvl& b, vvd& mu, const int i, const int j) { ll q; const int m = sz(b[0]); if (mu[i][j] > 0.5 || mu[i][j] < -0.5) { q = (ll)round(mu[i][j]); for (int k = 0; k < m; ++k) b[i][k] -= q * b[j][k]; for (int k = 0; k <= j; ++k) mu[i][k] -= mu[j][k] * q; } } /* LLL基底簡約 */ void LLLReduce(vvl& b, const float d = 0.99) { const int n = sz(b), m = sz(b[0]); int j, i, h; double t, nu, BB, C; auto [B, mu] = Gram_Schmidt_squared(b); ll tmp; for (int k = 1; k < n;) { h = k - 1; for (j = h; j > -1; --j) SizeReduce(b, mu, k, j); //Checks if the lattice basis matrix b satisfies Lovasz condition. if (k > 0 && B[k] < (d - mu[k][h] * mu[k][h]) * B[h]) { for (i = 0; i < m; ++i) { tmp = b[h][i]; b[h][i] = b[k][i]; b[k][i] = tmp; } nu = mu[k][h]; BB = B[k] + nu * nu * B[h]; C = 1.0 / BB; mu[k][h] = nu * B[h] * C; B[k] *= B[h] * C; B[h] = BB; for (i = 0; i <= k - 2; ++i) { t = mu[h][i]; mu[h][i] = mu[k][i]; mu[k][i] = t; } for (i = k + 1; i < n; ++i) { t = mu[i][k]; mu[i][k] = mu[i][h] - nu * t; mu[i][h] = t + mu[k][h] * mu[i][k]; } --k; } else ++k; } } } vl LLLReduce(const vvm& lat_) { int h = sz(lat_); int w = sz(lat_[0]); vvl lat(h + w, vl(w)); rep(i, h) rep(j, w) lat[i][j] = lat_[i][j].val(); rep(i, w) lat[h + i][i] = mint::mod(); h = sz(lat); satoshin::LLLReduce(lat); // L1 ノルムをチェックする. ll sum = 0; rep(j, w) sum += abs(lat[0][j]); dump("L1:", sum); // L1 ノルムが大きいものは捨てる. repi(i, 1, h - 1) { ll sum2 = 0; rep(j, w) sum2 += abs(lat[i][j]); if (sum2 > sum * 10.) { lat.resize(i); h = i; break; } } dump("lat:"); frac_print = 1; dumpel(lat); frac_print = 0; return lat[0]; } vl LLLReduce2(const vvm& xs) { int h = sz(xs); int w = sz(xs[0]); vl lat0(w); #ifdef _MSC_VER string cmd; cmd += "wolframscript -code \"MOD="; cmd += to_string(mint::mod()); cmd += ";"; cmd += "SortBy[LatticeReduce@Join[{"; rep(i, h) { cmd += "{"; rep(j, w) { cmd += to_string(xs[i][j].val()); cmd += ","; } if (cmd.back() == ',') cmd.pop_back(); cmd += "},"; } if (cmd.back() == ',') cmd.pop_back(); cmd += "},MOD IdentityMatrix["; cmd += to_string(w); cmd += "]],N@Norm@# &]\""; //dump("cmd:", cmd); FILE* fp = _popen(cmd.c_str(), "r"); char buf[1 << 20]; //while (fgets(buf, sizeof(buf), fp)) printf("%s", buf); while (fgets(buf, sizeof(buf), fp)) _pclose(fp); stringstream ss{ buf + 2 }; rep(j, w) { string s; getline(ss, s, ' '); lat0[j] = stol(s); } #endif return lat0; } string to_signed_string(mint x) { int v = x.val(); if (v > mint::mod() / 2) v -= mint::mod(); return to_string(v); } pair slice_1D(const vvm& tbl, int i2) { // seq : tbl[..][i2] を抜き出した列 vm seq; // offset : seq[0] が tbl[offset][i2] に対応することを表す. int offset = INF; rep(i1, sz(tbl)) { if (i2 < sz(tbl[i1])) { chmin(offset, i1); seq.push_back(tbl[i1][i2]); } } return { seq, offset }; } tuple slice_2D(const vvvm& box, int i3) { // tbl : box[..][..][i3] を抜き出したテーブル vvm tbl; // offset : tbl[0][0] が box[offset1][offset2][i3] に対応することを表す. int offset1 = INF, offset2 = INF; rep(i1, sz(box)) { tbl.push_back(vm()); rep(i2, sz(box[i1])) { if (i2 < sz(box[i1]) && i3 < sz(box[i1][i2])) { chmin(offset1, i1); chmin(offset2, i2); tbl.back().push_back(box[i1][i2][i3]); } } if (tbl.back().empty()) tbl.pop_back(); } return { tbl, offset1, offset2 }; } // 変数係数線形漸化式の係数を計算し,埋め込み用のコードを出力する. vvm embed_coefs_1D(const vm& seq, int TRM_ini = 1, int DEG_ini = 1, int LLL = 0) { int n = sz(seq); // TRM 項間の,係数多項式の次数 DEG 未満の変数係数線形漸化式 // Σt∈[0..TRM) Σd∈[0..DEG) coefs[t][d] (i-TRM+1+t)^d seq[i-t] = 0 // を探す. int TRM = TRM_ini, DEG = DEG_ini; int P_MAX = max(TRM, DEG); while (1) { //dump("TRM:", TRM, "DEG:", DEG); int h = n - TRM + 1; int w = TRM * DEG; // 行列方程式 A x = 0 を解いて一般解の基底 xs を求める. Matrix A(h, w); repi(i, TRM - 1, n - 1) { rep(t, TRM) rep(d, DEG) { A[i - TRM + 1][t * DEG + d] = mint(i - TRM + 1 + t).pow(d) * seq[i - t]; } } vvm xs; gauss_jordan_elimination(A, vm(h), &xs); // 自明解 x = 0 しか存在しない場合は失敗. if (xs.empty()) { while (1) { DEG++; if (DEG > P_MAX) { DEG = 1; TRM++; }; if (TRM > P_MAX) { TRM = 1; P_MAX++; }; if (max(TRM, DEG) == P_MAX) break; } continue; } dump("TRM:", TRM, "DEG:", DEG); dump("#eq:", h, "#var:", w); dump("xs:"); frac_print = 1; dumpel(xs); frac_print = 0; // 変数係数線形漸化式の係数 vvm coefs(TRM, vm(DEG)); if (LLL == 0) { rep(t, TRM) rep(d, DEG) coefs[t][d] = xs.back()[t * DEG + d]; } else if (LLL == 1) { // A x = 0 の解空間の基底に LLL を適用する. auto lat0 = LLLReduce(xs); rep(t, TRM) rep(d, DEG) coefs[t][d] = lat0[t * DEG + d]; } else if (LLL == 2) { // A x = 0 の解空間の基底に本気の LLL を適用する(埋め込み専用) auto lat0 = LLLReduce2(xs); rep(t, TRM) rep(d, DEG) coefs[t][d] = lat0[t * DEG + d]; } // 分母チェック #ifdef _MSC_VER cout << "dnm 1D:" << endl; string cmd; cmd += "wolframscript -code \"MOD="; cmd += to_string(mint::mod()); cmd += ";"; cmd += "toFrac[x_]:=Module[{},Do[num=Mod[x*dnm,MOD,-MOD/2];If[Abs[num]<=Sqrt@MOD,Return[num/dnm,Module]],{dnm,1,Sqrt@MOD}]];"; cmd += "Factor["; rep(d, DEG) { cmd += to_string(coefs[0][d].val()); cmd += "*(i1-"; cmd += to_string(TRM); cmd += "+1)^"; cmd += to_string(d); cmd += "+"; } cmd.pop_back(); cmd += ",Modulus->MOD]/.x_Integer:>toFrac[x]\""; //dump("cmd:", cmd); FILE* fp = _popen(cmd.c_str(), "r"); char buf[1 << 16]; while (fgets(buf, sizeof(buf), fp)) printf("%s", buf); _pclose(fp); #endif return coefs; } return vvm(); } // 変数係数線形漸化式の係数を計算し,埋め込み用のコードを出力する. pair embed_coefs_2D(const vvm& tbl, int DEG1_ini = 1, int TRM2_ini = 1, int DEG2_ini = 1, int LLL = 0) { int n1 = sz(tbl); // TRM 項間の,係数多項式の次数 DEG 未満の変数係数線形漸化式 // Σt1∈[0..TRM1) Σd1∈[0..DEG1) Σt2∈[0..TRM2) Σd2∈[0..DEG2) // c[t1][d1][t2][d2] (i1-TRM1+1+t1)^d1 (i2-TRM2+1+t2)^d2 tbl[i1-t1][i2-t2] = 0 // を探す. int TRM1 = 1, DEG1 = DEG1_ini; int TRM2 = TRM2_ini, DEG2 = DEG2_ini; int P_MAX = max({ TRM1, DEG1, TRM2, DEG2 }); while (1) { //dump("TRM1:", TRM1, "DEG1:", DEG1, "TRM2:", TRM2, "DEG2:", DEG2); int w = TRM1 * DEG1 * TRM2 * DEG2; // 行列方程式 A x = 0 を解いて一般解の基底 xs を求める. Matrix A(0, w); repi(i1, TRM1 - 1, n1 - 1) { int n2 = sz(tbl[i1]); repi(i2, TRM2 - 1, n2 - 1) { vm a(w); bool valid = true; rep(t1, TRM1) rep(d1, DEG1) rep(t2, TRM2) rep(d2, DEG2) { if (i2 - t2 >= sz(tbl[i1 - t1])) { valid = false; t1 = TRM1; d1 = DEG1; t2 = TRM2; d2 = DEG2; break; } int idx = ((t1 * DEG1 + d1) * TRM2 + t2) * DEG2 + d2; mint pow_i = mint(i1 - TRM1 + 1 + t1).pow(d1) * mint(i2 - TRM2 + 1 + t2).pow(d2); a[idx] = pow_i * tbl[i1 - t1][i2 - t2]; } if (valid) A.push_back(a); } } int h = A.n; vvm xs; gauss_jordan_elimination(A, vm(h), &xs); // 自明解 x = 0 しか存在しない場合は失敗. if (xs.empty()) { while (1) { DEG2++; if (DEG2 > P_MAX) { DEG2 = 1; TRM2++; }; if (TRM2 > P_MAX) { TRM2 = 1; DEG1++; }; if (DEG1 > P_MAX) { DEG1 = 1; TRM1++; }; if (TRM1 > 1) { TRM1 = 1; P_MAX++; }; if (max({ TRM1, DEG1, TRM2, DEG2 }) == P_MAX) break; } continue; } dump("TRM1:", TRM1, "DEG1:", DEG1, "TRM2:", TRM2, "DEG2:", DEG2); dump("#eq:", h, "#var:", w); dump("xs:"); frac_print = 1; dumpel(xs); frac_print = 0; // 変数係数線形漸化式の係数 vvvm coefs(DEG1, vvm(TRM2, vm(DEG2))); if (LLL == 0) { rep(d1, DEG1) rep(t2, TRM2) rep(d2, DEG2) { int idx = (d1 * TRM2 + t2) * DEG2 + d2; coefs[d1][t2][d2] = xs.back()[idx]; } } else if (LLL == 1) { // A x = 0 の解空間の基底に LLL を適用する. auto lat0 = LLLReduce(xs); rep(d1, DEG1) rep(t2, TRM2) rep(d2, DEG2) { int idx = (d1 * TRM2 + t2) * DEG2 + d2; coefs[d1][t2][d2] = lat0[idx]; } } else if (LLL == 2) { // A x = 0 の解空間の基底に本気の LLL を適用する(埋め込み専用) auto lat0 = LLLReduce2(xs); rep(d1, DEG1) rep(t2, TRM2) rep(d2, DEG2) { int idx = (d1 * TRM2 + t2) * DEG2 + d2; coefs[d1][t2][d2] = lat0[idx]; } } // 分母チェック #ifdef _MSC_VER cout << "dnm 2D:" << endl; string cmd; cmd += "wolframscript -code \"MOD="; cmd += to_string(mint::mod()); cmd += ";"; cmd += "toFrac[x_]:=Module[{},Do[num=Mod[x*dnm,MOD,-MOD/2];If[Abs[num]<=Sqrt@MOD,Return[num/dnm,Module]],{dnm,1,Sqrt@MOD}]];"; cmd += "Factor["; rep(d2, DEG2) { rep(d1, DEG1) { cmd += to_signed_string(coefs[d1][0][d2]); cmd += "*(i1-"; cmd += to_string(TRM1); cmd += "+1)^"; cmd += to_string(d1); cmd += "*(i2-"; cmd += to_string(TRM2); cmd += "+1)^"; cmd += to_string(d2); cmd += "+"; } } cmd.pop_back(); cmd += "]/.x_Integer:>toFrac[x]\""; //dump("cmd:", cmd); FILE* fp = _popen(cmd.c_str(), "r"); char buf[1 << 16]; while (fgets(buf, sizeof(buf), fp)) printf("%s", buf); _pclose(fp); #endif // i1 方向への初項の延長 dump("------- embed_coefs_1D -------"); vvvm coefs1(TRM2 - 1); rep(i2, TRM2 - 1) { dump("--- i2:", i2, "---"); auto [seq, offset] = slice_1D(tbl, i2); coefs1[i2] = embed_coefs_1D(seq, 1, 1, LLL); } return { coefs1, coefs }; } return pair(); } // 変数係数線形漸化式の係数を計算し,埋め込み用のコードを出力する. tuple embed_coefs_3D(const vvvm& box, int DEG1_ini = 1, int DEG2_ini = 1, int TRM3_ini = 1, int DEG3_ini = 1, int LLL = 0) { int n1 = sz(box); // TRM 項間の,係数多項式の次数 DEG 未満の変数係数線形漸化式 // Σt1∈[0..TRM1) Σd1∈[0..DEG1) Σt2∈[0..TRM2) Σd2∈[0..DEG2) Σt3∈[0..TRM3) Σd3∈[0..DEG3) // c[t1][d1][t2][d2]][t3][d3] (i1-TRM1+1+t1)^d1 (i2-TRM2+1+t2)^d2 (i3-TRM3+1+t3)^d3 box[i1-t1][i2-t2][i3-t3] = 0 // を探す. int TRM1 = 1, DEG1 = DEG1_ini; int TRM2 = 1, DEG2 = DEG2_ini; int TRM3 = TRM3_ini, DEG3 = DEG3_ini; int P_MAX = max({ TRM1, DEG1, TRM2, DEG2, TRM3, DEG3 }); while (1) { //dump("TRM1:", TRM1, "DEG1:", DEG1, "TRM2:", TRM2, "DEG2:", DEG2, "TRM3:", TRM3, "DEG3:", DEG3); int w = TRM1 * DEG1 * TRM2 * DEG2 * TRM3 * DEG3; // 行列方程式 A x = 0 を解いて一般解の基底 xs を求める. Matrix A(0, w); repi(i1, TRM1 - 1, n1 - 1) { int n2 = sz(box[i1]); repi(i2, TRM2 - 1, n2 - 1) { int n3 = sz(box[i1][i2]); repi(i3, TRM3 - 1, n3 - 1) { vm a(w); bool valid = true; rep(t1, TRM1) rep(d1, DEG1) rep(t2, TRM2) rep(d2, DEG2) rep(t3, TRM3) rep(d3, DEG3) { if (i2 - t2 >= sz(box[i1 - t1]) || i3 - t3 >= sz(box[i1 - t1][i2 - t2])) { valid = false; t1 = TRM1; d1 = DEG1; t2 = TRM2; d2 = DEG2; t3 = TRM3; d3 = DEG3; break; } int idx = ((((t1 * DEG1 + d1) * TRM2 + t2) * DEG2 + d2) * TRM3 + t3) * DEG3 + d3; mint pow_i = mint(i1 - TRM1 + 1 + t1).pow(d1) * mint(i2 - TRM2 + 1 + t2).pow(d2) * mint(i3 - TRM3 + 1 + t3).pow(d3); a[idx] = pow_i * box[i1 - t1][i2 - t2][i3 - t3]; } if (valid) A.push_back(a); } } } int h = A.n; vvm xs; gauss_jordan_elimination(A, vm(h), &xs); // 自明解 x = 0 しか存在しない場合は失敗. if (xs.empty()) { while (1) { DEG3++; if (DEG3 > P_MAX) { DEG3 = 1; TRM3++; }; if (TRM3 > P_MAX) { TRM3 = 1; DEG2++; }; if (DEG2 > P_MAX) { DEG2 = 1; TRM2++; }; if (TRM2 > 1) { TRM2 = 1; DEG1++; }; if (DEG1 > P_MAX) { DEG1 = 1; TRM1++; }; if (TRM1 > 1) { TRM1 = 1; P_MAX++; }; if (max({ TRM1, DEG1, TRM2, DEG2, TRM3, DEG3 }) == P_MAX) break; } continue; } dump("TRM1:", TRM1, "DEG1:", DEG1, "TRM2:", TRM2, "DEG2:", DEG2, "TRM3:", TRM3, "DEG3:", DEG3); dump("#eq:", h, "#var:", w); dump("xs:"); frac_print = 1; dumpel(xs); frac_print = 0; // 変数係数線形漸化式の係数 vvvvm coefs3(DEG1, vvvm(DEG2, vvm(TRM3, vm(DEG3)))); if (LLL == 0) { rep(d1, DEG1) rep(d2, DEG2) rep(t3, TRM3) rep(d3, DEG3) { int idx = ((d1 * DEG2 + d2) * TRM3 + t3) * DEG3 + d3; coefs3[d1][d2][t3][d3] = xs.back()[idx]; } } else if (LLL == 1) { // A x = 0 の解空間の基底に LLL を適用する. auto lat0 = LLLReduce(xs); rep(d1, DEG1) rep(d2, DEG2) rep(t3, TRM3) rep(d3, DEG3) { int idx = ((d1 * DEG2 + d2) * TRM3 + t3) * DEG3 + d3; coefs3[d1][d2][t3][d3] = lat0[idx]; } } else if (LLL == 2) { // A x = 0 の解空間の基底に本気の LLL を適用する(埋め込み専用) auto lat0 = LLLReduce2(xs); rep(d1, DEG1) rep(d2, DEG2) rep(t3, TRM3) rep(d3, DEG3) { int idx = ((d1 * DEG2 + d2) * TRM3 + t3) * DEG3 + d3; coefs3[d1][d2][t3][d3] = lat0[idx]; } } // 分母チェック #ifdef _MSC_VER cout << "dnm 3D:" << endl; string cmd; cmd += "wolframscript -code \"MOD="; cmd += to_string(mint::mod()); cmd += ";"; cmd += "toFrac[x_]:=Module[{},Do[num=Mod[x*dnm,MOD,-MOD/2];If[Abs[num]<=Sqrt@MOD,Return[num/dnm,Module]],{dnm,1,Sqrt@MOD}]];"; cmd += "Factor["; rep(d3, DEG3) { rep(d2, DEG2) { rep(d1, DEG1) { cmd += to_signed_string(coefs3[d1][d2][0][d3]); cmd += "*(i1-"; cmd += to_string(TRM1); cmd += "+1)^"; cmd += to_string(d1); cmd += "*(i2-"; cmd += to_string(TRM2); cmd += "+1)^"; cmd += to_string(d2); cmd += "*(i3-"; cmd += to_string(TRM3); cmd += "+1)^"; cmd += to_string(d3); cmd += "+"; } } } cmd.pop_back(); cmd += "]/.x_Integer:>toFrac[x]\""; //dump("cmd:", cmd); FILE* fp = _popen(cmd.c_str(), "r"); char buf[4096]; while (fgets(buf, sizeof(buf), fp)) printf("%s", buf); _pclose(fp); #endif // (i1,i2) 平面における初項の延長 dump("------- embed_coefs_2D -------"); vvvvm coefs1(TRM3 - 1); vvvvm coefs2(TRM3 - 1); rep(i3, TRM3 - 1) { dump("--- i3:", i3, "---"); auto [tbl, offset1, offset2] = slice_2D(box, i3); tie(coefs1[i3], coefs2[i3]) = embed_coefs_2D(tbl, 1, 1, LLL); } #ifdef _MSC_VER // 埋め込み用の文字列を出力する. string eb; eb += "\n"; eb += "constexpr int TRM1 = "; eb += to_string(TRM1); eb += ";\n"; eb += "constexpr int DEG1 = "; eb += to_string(DEG1); eb += ";\n"; eb += "constexpr int TRM2 = "; eb += to_string(TRM2); eb += ";\n"; eb += "constexpr int DEG2 = "; eb += to_string(DEG2); eb += ";\n"; eb += "constexpr int TRM3 = "; eb += to_string(TRM3); eb += ";\n"; eb += "constexpr int DEG3 = "; eb += to_string(DEG3); eb += ";\n\n"; eb += "vvvm coefs1[TRM3 - 1] = {"; rep(i3, TRM3 - 1) { eb += "{\n"; rep(i2, sz(coefs1[i3])) { eb += "{"; rep(t1, sz(coefs1[i3][i2])) { eb += "{"; rep(d1, sz(coefs1[i3][i2][t1])) { eb += to_signed_string(coefs1[i3][i2][t1][d1]) + ","; } eb.pop_back(); eb += "},"; } eb.pop_back(); eb += "},\n"; } eb.pop_back(); eb.pop_back(); eb += "},"; } eb.pop_back(); eb += "};\n\n"; eb += "vvvm coefs2[TRM3 - 1] = {"; rep(i3, TRM3 - 1) { eb += "{\n"; rep(d1, sz(coefs2[i3])) { eb += "{"; rep(t2, sz(coefs2[i3][d1])) { eb += "{"; rep(d2, sz(coefs2[i3][d1][t2])) { eb += to_signed_string(coefs2[i3][d1][t2][d2]) + ","; } eb.pop_back(); eb += "},"; } eb.pop_back(); eb += "},\n"; } eb.pop_back(); eb.pop_back(); eb += "},"; } eb.pop_back(); eb += "};\n\n"; eb += "mint coefs3[DEG1][DEG2][TRM3][DEG3] = {"; rep(d1, DEG1) { eb += "{\n"; rep(d2, DEG2) { eb += "{"; rep(t3, TRM3) { eb += "{"; rep(d3, DEG3) { eb += to_signed_string(coefs3[d1][d2][t3][d3]) + ","; } eb.pop_back(); eb += "},"; } eb.pop_back(); eb += "},\n"; } eb.pop_back(); eb.pop_back(); eb += "},"; } eb.pop_back(); eb += "};\n\n"; cout << eb; #endif return { coefs1, coefs2, coefs3 }; } return tuple(); } // 数列 seq を延長して seq[0..N] にする. void solve_1D(vm& seq, int N, vvm coefs) { // static int call_cnt = 0; int TRM = sz(coefs); int DEG = sz(coefs[0]); int n = sz(seq); seq.resize(N + 1); // TRM 項間の,係数多項式の次数 DEG 未満の変数係数線形漸化式 // Σt∈[0..TRM) Σd∈[0..DEG) coefs[t][f] (i-TRM+1+t)^d a[i-t] = 0 // を用いて数列 a を延長する. repi(i, n, N) { mint dnm = 0; mint pow_i = 1; rep(d, DEG) { dnm += coefs[0][d] * pow_i; pow_i *= i - TRM + 1; } mint num = 0; repi(t, 1, TRM - 1) { mint pow_i = 1; rep(d, DEG) { num += coefs[t][d] * pow_i * seq[i - t]; pow_i *= i - TRM + 1 + t; } } // dnm * a[i] + num = 0 を解く.分母 0 に注意! if (dnm == 0) { dump("DIVISION BY ZERO at i1 =", i); Assert(dnm != 0); } seq[i] = -num / dnm; // 除算回避用 //mint dnm_inv; //if (call_cnt == 0) { // dnm_inv = fm.inv_neg(1 + i); //} //else { // dnm_inv = fm.inv_neg(-1 + 2 * i) * 2 * fm.inv_neg(2 + i); //} //seq[i] = -num * dnm_inv; } // call_cnt++; } // 2 次元数列 tbl を元に seq = tbl[N][0..M] を計算する. vm solve_2D(const vvm& tbl, int N, int M, vvvm coefs1, vvvm coefs) { // static int call_cnt = 0; int TRM1 = 1; int DEG1 = sz(coefs); int TRM2 = sz(coefs[0]); int DEG2 = sz(coefs[0][0]); vm res(TRM2 - 1); // i1 方向に tbl[..][0], ..., tbl[..][TRM2-2] を延長する. dump("------- solve_1D -------"); rep(i2, TRM2 - 1) { dump("--- i2:", i2, "---"); auto [seq, offset] = slice_1D(tbl, i2); if (N - offset < 0) continue; solve_1D(seq, N - offset, coefs1[i2]); res[i2] = seq[N - offset]; } vm pow_i1s(DEG1); pow_i1s[0] = 1; repi(d1, 1, DEG1 - 1) pow_i1s[d1] = pow_i1s[d1 - 1] * (N - TRM1 + 1); // i2 方向に tbl[N][..] を延長する. res.resize(M + 1); repi(i2, TRM2 - 1, M) { mint dnm = 0; mint pow_i2 = 1; rep(d2, DEG2) { rep(d1, DEG1) { dnm += coefs[d1][0][d2] * pow_i1s[d1] * pow_i2; } pow_i2 *= i2 - TRM2 + 1; } mint num = 0; repi(t2, 1, TRM2 - 1) { mint pow_i2 = 1; rep(d2, DEG2) { rep(d1, DEG1) { num += coefs[d1][t2][d2] * pow_i1s[d1] * pow_i2 * res[i2 - t2]; } pow_i2 *= i2 - TRM2 + 1 + t2; } } // dnm * tbl[N][i2] + num = 0 を解く.分母 0 に注意! if (dnm == 0) { dump("DIVISION BY ZERO at N1 =", N, "i2 =", i2); Assert(dnm != 0); } res[i2] = -num / dnm; } // call_cnt++; return res; } // 3 次元数列 box を元に seq = tbl[N1][N2][0..N3] を計算する. vm solve_3D(const vvvm& box, int N1, int N2, int N3, vvvvm coefs1, vvvvm coefs2, vvvvm coefs3) { int TRM1 = 1; int DEG1 = sz(coefs3); int TRM2 = 1; int DEG2 = sz(coefs3[0]); int TRM3 = sz(coefs3[0][0]); int DEG3 = sz(coefs3[0][0][0]); vm res(TRM3 - 1); // (i1,i2) 平面における延長 dump("------- solve_2D -------"); rep(i3, TRM3 - 1) { dump("--- i3:", i3, "---"); auto [tbl, offset1, offset2] = slice_2D(box, i3); if (N1 - offset1 < 0 || N2 - offset2 < 0) continue; auto seq = solve_2D(tbl, N1 - offset1, N2 - offset2, coefs1[i3], coefs2[i3]); dump("seq:", seq); res[i3] = seq[N2 - offset2]; } vm pow_i1s(DEG1); pow_i1s[0] = 1; repi(d1, 1, DEG1 - 1) pow_i1s[d1] = pow_i1s[d1 - 1] * (N1 - TRM1 + 1); vm pow_i2s(DEG2); pow_i2s[0] = 1; repi(d2, 1, DEG2 - 1) pow_i2s[d2] = pow_i2s[d2 - 1] * (N2 - TRM2 + 1); // i3 方向に tbl[N1][N2][..] を延長する. res.resize(N3 + 1); repi(i3, TRM3 - 1, N3) { mint dnm = 0; mint pow_i3 = 1; rep(d3, DEG3) { rep(d2, DEG2) { rep(d1, DEG1) { dnm += coefs3[d1][d2][0][d3] * pow_i1s[d1] * pow_i2s[d2] * pow_i3; } } pow_i3 *= i3 - TRM3 + 1; } mint num = 0; repi(t3, 1, TRM3 - 1) { mint pow_i3 = 1; rep(d3, DEG3) { rep(d2, DEG2) { rep(d1, DEG1) { num += coefs3[d1][d2][t3][d3] * pow_i1s[d1] * pow_i2s[d2] * pow_i3 * res[i3 - t3]; } } pow_i3 *= i3 - TRM3 + 1 + t3; } } // dnm * tbl[N1][N2][i3] + num = 0 を解く.分母 0 に注意! if (dnm == 0) { dump("DIVISION BY ZERO at N1 =", N1, "N2 =", N2, "i3 =", i3); Assert(dnm != 0); } res[i3] = -num / dnm; } return res; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); //【方法】 // 愚直を書いて集めたデータをもとに変数係数線形漸化式を復元する. //【使い方】 // 1. vvm tbl = naive() を実装する. // 2. embed_coefs() を実行する. // 3. 出力を solve() 内に貼る. // 4. solve(tbl, n, m) で勝手に tbl[n][0..m] を求めてくれる. // 愚直解を用意する.再計算がイヤなら埋め込む. auto box = naive(); // 愚直解を渡して変数係数線形漸化式の係数を得る.再計算がイヤなら埋め込む. // 引数:tbl, DEG1_ini, DEG2_ini, TRM3_ini, DEG3_ini, LLL auto [coefs1, coefs2, coefs3] = embed_coefs_3D(box, 1, 1, 1, 1, 0); int n, a1, a2; cin >> n >> a1 >> a2; if (a1 == a2) { mint res = n; repi(i, 1, n) res *= i; EXIT(res); } if (a1 > a2) swap(a1, a2); int n0 = a1 - 1, n1 = a2 - a1 - 1, n2 = n - a2 - 1; // 3 次元数列 box を元に seq = box[n1][n2][0..n3] を計算する. // 整理すると綺麗な式になるなら FullSimplify[] すると速くなる. auto seq = solve_3D(box, n0, n1, n2, coefs1, coefs2, coefs3); // auto seq = solve_3D(box, n0, n1, n2); // dump(seq); mint res = seq[n2]; EXIT(res); }