#include #include #include #include #include #include using namespace std; // ヒット・ブロー判定を1つの整数にパック (H*6 + B) typedef uint8_t Result; struct Guess { int8_t d[5]; int16_t mask; }; // 高速判定関数 inline Result get_hb(const Guess& q, const Guess& t) { int h = 0; if (q.d[0] == t.d[0]) h++; if (q.d[1] == t.d[1]) h++; if (q.d[2] == t.d[2]) h++; if (q.d[3] == t.d[3]) h++; if (q.d[4] == t.d[4]) h++; int common = __builtin_popcount(q.mask & t.mask); return (Result)(h * 6 + (common - h)); } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); auto start_time = chrono::steady_clock::now(); mt19937 rng(42); // 1. 全パターン生成 (30,240通り) vector all_patterns; for (int i = 0; i <= 99999; i++) { int tmp = i, m = 0; int8_t digs[5]; bool ok = true; for (int j = 4; j >= 0; j--) { digs[j] = tmp % 10; if (m & (1 << digs[j])) { ok = false; break; } m |= (1 << digs[j]); tmp /= 10; } if (ok) { Guess g; g.mask = m; for (int j = 0; j < 5; j++) g.d[j] = digs[j]; all_patterns.push_back(g); } } vector candidates; for (int i = 0; i < (int)all_patterns.size(); i++) candidates.push_back(i); vector is_target_found(all_patterns.size(), false); int found_count = 0; int next_guess_idx = 0; // 最初は 01234 // エントロピー計算用の事前計算テーブル double log_table[30241]; for (int i = 0; i <= 30240; i++) log_table[i] = (i <= 1) ? 0 : log2((double)i); while (found_count < 30) { // --- クエリフェーズ --- for (int i = 0; i < 5; i++) cout << (int)all_patterns[next_guess_idx].d[i]; cout << endl; // --- レスポンス取得 --- int res_freq[36] = {0}; for (int i = 0; i < 30; i++) { int h, b; cin >> h >> b; if (h == -1) return 0; res_freq[h * 6 + b]++; } if (res_freq[30] == 30) break; // --- フィルタリングとターゲット特定 --- // (5,0)が既に特定済みの数より多ければ、今のクエリが正解の一つだったということ int total_known_found = 0; for(int i=0; i total_known_found && !is_target_found[next_guess_idx]) { is_target_found[next_guess_idx] = true; total_known_found++; } found_count = res_freq[30]; // 未知のターゲットが生成したHB結果の分布を作成 int unknown_res_freq[36]; for (int j = 0; j < 36; j++) unknown_res_freq[j] = res_freq[j]; unknown_res_freq[30] -= total_known_found; vector next_candidates; for (int c_idx : candidates) { if (is_target_found[c_idx]) continue; Result res = get_hb(all_patterns[next_guess_idx], all_patterns[c_idx]); // ヒストグラムに存在する結果を出す候補のみ残す if (unknown_res_freq[res] > 0) { next_candidates.push_back(c_idx); } } candidates = move(next_candidates); // --- 次の推論フェーズ --- if (candidates.size() <= (size_t)(30 - found_count)) { // 残り少なければ直接候補を試す for(int c : candidates) { if(!is_target_found[c]) { next_guess_idx = c; break; } } } else { // エントロピー最大化による探索 double max_entropy = -1.0; auto now = chrono::steady_clock::now(); auto elapsed = chrono::duration_cast(now - start_time).count(); // 実行時間に応じてサンプル数を調整(後半ほど精密に) int sample_size = (candidates.size() < 800) ? candidates.size() : 800; int attempt_limit = (elapsed < 4000) ? 500 : 100; // 時間が厳しくなれば試行回数を減らす for (int t = 0; t < attempt_limit; t++) { // 候補内から選ぶか全体から選ぶか int q_idx = (rng() % 10 < 7) ? candidates[rng() % candidates.size()] : rng() % all_patterns.size(); if (is_target_found[q_idx]) continue; int counts[36] = {0}; // サンプリングによる分布推定 for (int i = 0; i < sample_size; i++) { int s_idx = candidates[rng() % candidates.size()]; counts[get_hb(all_patterns[q_idx], all_patterns[s_idx])]++; } double entropy = 0; for (int j = 0; j < 36; j++) { if (counts[j] > 0) entropy -= (double)counts[j] * log_table[counts[j]]; } if (entropy > max_entropy) { max_entropy = entropy; next_guess_idx = q_idx; } } } } return 0; }