#include #include #include #include #include #include #include #include #include #include #include #include #include #include // credit atcoder #include #include #include #include #include #include #include #include #include #ifdef _MSC_VER #include #endif #include #include namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < // 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template constexpr int primitive_root = primitive_root_constexpr(m); // @param n `n < 2^32` // @param m `1 <= m < 2^32` // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64) unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; // y_max < m * (n + 1) // floor(y_max / m) <= n n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal namespace internal { #ifndef _MSC_VER template using is_signed_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_unsigned_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using make_unsigned_int128 = typename std::conditional::value, __uint128_t, unsigned __int128>; template using is_integral = typename std::conditional::value || is_signed_int128::value || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using is_signed_int = typename std::conditional<(is_integral::value && std::is_signed::value) || is_signed_int128::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional<(is_integral::value && std::is_unsigned::value) || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional< is_signed_int128::value, make_unsigned_int128, typename std::conditional::value, std::make_unsigned, std::common_type>::type>::type; #else template using is_integral = typename std::is_integral; template using is_signed_int = typename std::conditional::value && std::is_signed::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional::value && std::is_unsigned::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional::value, std::make_unsigned, std::common_type>::type; #endif template using is_signed_int_t = std::enable_if_t::value>; template using is_unsigned_int_t = std::enable_if_t::value>; template using to_unsigned_t = typename to_unsigned::type; } // namespace internal namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template using is_modint = std::is_base_of; template using is_modint_t = std::enable_if_t::value>; } // namespace internal template * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template * = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime; }; template struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template * = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template internal::barrett dynamic_modint::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template using is_static_modint = std::is_base_of; template using is_static_modint_t = std::enable_if_t::value>; template struct is_dynamic_modint : public std::false_type {}; template struct is_dynamic_modint> : public std::true_type {}; template using is_dynamic_modint_t = std::enable_if_t::value>; } // namespace internal using mint = modint998244353; /* g++ -std=c++23 -O2 -Wall -Wextra A.cpp -o A ./A < input.in > output.out */ template struct Trie { struct Node { char c; std::array nxt; std::vector tails; explicit Node(const char c) : c(c) { std::fill(nxt.begin(), nxt.end(), -1); } }; const std::function convert; std::vector nodes; explicit Trie(const std::function convert = [](const char c) -> int { return c - 'a'; }) : convert(convert) { nodes.emplace_back('$'); } void add(const std::string& s, const int id = -1, int pos = 0) { for (const char c : s) { const int c_int = convert(c); if (nodes[pos].nxt[c_int] == -1) { const int nxt_pos = nodes.size(); nodes[pos].nxt[c_int] = nxt_pos; nodes.emplace_back(c); pos = nxt_pos; } else { pos = nodes[pos].nxt[c_int]; } } nodes[pos].tails.emplace_back(id); } int find(const std::string& t, int pos = 0) const { for (const char c : t) { const int c_int = convert(c); if (nodes[pos].nxt[c_int] == -1) return -1; pos = nodes[pos].nxt[c_int]; } return pos; } }; template struct AhoCorasick : Trie { using Trie::Trie; std::vector nums; std::vector out_link; // 指向“最近的一个 tails 非空的祖先”(含自己) void build() { auto& vertices = this->nodes; const int n = vertices.size(); nums.assign(n, 0); out_link.assign(n, 0); for (int i = 0; i < n; ++i) { nums[i] = (int)vertices[i].tails.size(); } // 关键:根的 fail 置 0(用 nxt[Sigma] 存) vertices[0].nxt[Sigma] = 0; std::queue que; for (int i = 0; i < Sigma; ++i) { if (vertices[0].nxt[i] == -1) { vertices[0].nxt[i] = 0; } else { int v = vertices[0].nxt[i]; vertices[v].nxt[Sigma] = 0; que.emplace(v); } } // root 的 out_link:如果 root 有 tails(一般没有)则指自己,否则 0 out_link[0] = vertices[0].tails.empty() ? 0 : 0; while (!que.empty()) { int u = que.front(); que.pop(); int f = vertices[u].nxt[Sigma]; // nums 继承(如果你还要 match 总次数用得到;distinct 不依赖它) nums[u] += nums[f]; // out_link:若自己有输出,则指自己;否则指 fail 的 out_link out_link[u] = vertices[u].tails.empty() ? out_link[f] : u; for (int c = 0; c < Sigma; ++c) { int v = vertices[u].nxt[c]; if (v == -1) continue; int on_failure = f; while (vertices[on_failure].nxt[c] == -1) { on_failure = vertices[on_failure].nxt[Sigma]; } vertices[v].nxt[Sigma] = vertices[on_failure].nxt[c]; que.emplace(v); } } } int move(char c, int pos) const { const int c_int = this->convert(c); while (this->nodes[pos].nxt[c_int] == -1) pos = this->nodes[pos].nxt[Sigma]; return this->nodes[pos].nxt[c_int]; } int match_distinct(const std::string& t, int m_patterns, int pos = 0) const { static std::vector vis; static int stamp = 1; if ((int)vis.size() < m_patterns) vis.assign(m_patterns, 0); ++stamp; int ans = 0; for (char c : t) { pos = move(c, pos); int u = out_link[pos]; while (u != 0) { for (int id : this->nodes[u].tails) { if (id >= 0 && id < m_patterns && vis[id] != stamp) { vis[id] = stamp; ++ans; } } int f = this->nodes[u].nxt[Sigma]; u = out_link[f]; } } return ans; } int match(const std::string& t, int pos = 0) const { int total = 0; for (const char c : t) { pos = move(c, pos); total += nums[pos]; } return total; } std::map match_fully(const std::string& t, int pos = 0) const { static_assert(IS_FULL_VER); std::map mp; for (const char c : t) { pos = move(c, pos); for (const int id : this->nodes[pos].tails) ++mp[id]; } return mp; } }; struct RollingHash { static const uint64_t mod = (1ull << 61ull) - 1; using uint128_t = __uint128_t; std::vector power; const uint64_t base; static inline uint64_t add(uint64_t a, uint64_t b) { if ((a += b) >= mod) a -= mod; return a; } static inline uint64_t mul(uint64_t a, uint64_t b) { uint128_t c = (uint128_t)a * b; return add(c >> 61, c & mod); } static inline uint64_t generate_base() { std::mt19937_64 mt( std::chrono::steady_clock::now().time_since_epoch().count()); std::uniform_int_distribution rand(1, RollingHash::mod - 1); return rand(mt); } inline void expand(size_t sz) { if (power.size() < sz + 1) { int pre_sz = (int)power.size(); power.resize(sz + 1); for (int i = pre_sz - 1; i < sz; i++) { power[i + 1] = mul(power[i], base); } } } explicit RollingHash(uint64_t base = generate_base()) : base(base), power{1} {} std::vector build(const std::string& s) const { int sz = s.size(); std::vector hashed(sz + 1); for (int i = 0; i < sz; i++) { hashed[i + 1] = add(mul(hashed[i], base), s[i]); } return hashed; } template std::vector build(const std::vector& s) const { int sz = s.size(); std::vector hashed(sz + 1); for (int i = 0; i < sz; i++) { hashed[i + 1] = add(mul(hashed[i], base), s[i]); } return hashed; } // [l, r) uint64_t query(const std::vector& s, int l, int r) { expand(r - l); return add(s[r], mod - mul(s[l], power[r - l])); } uint64_t combine(uint64_t h1, uint64_t h2, size_t h2len) { expand(h2len); return add(mul(h1, power[h2len]), h2); } int lcp(const std::vector& a, int l1, int r1, const std::vector& b, int l2, int r2) { int len = std::min(r1 - l1, r2 - l2); int low = 0, high = len + 1; while (high - low > 1) { int mid = (low + high) / 2; if (query(a, l1, l1 + mid) == query(b, l2, l2 + mid)) low = mid; else high = mid; } return low; } }; int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(nullptr); std::string s; std::cin >> s; int n = s.size(); RollingHash rh; std::string yc = "yukicoder"; auto a = rh.build(s); auto b = rh.build(yc); int m = yc.size(); int ans = 0; int cur = 0; for (int i = 0; i + m - 1 < n; i++) { if (rh.query(a, i, i + m) == rh.query(b, 0, m)) { cur += 1; i += m - 1; ans = std::max(ans, cur); } else { cur = 0; } } std::cout << ans << '\n'; return 0; }