# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py import math from bisect import bisect_left, bisect_right class SortedMultiset: BUCKET_RATIO = 16 SPLIT_RATIO = 24 def __init__(self, a = []): "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)" a = list(a) n = self.size = len(a) if any(a[i] > a[i + 1] for i in range(n - 1)): a.sort() num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO))) self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)] def __iter__(self): for i in self.a: for j in i: yield j def __reversed__(self): for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedMultiset" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _position(self, x): "return the bucket, index of the bucket and position in which x should be. self must not be empty." for i, a in enumerate(self.a): if x <= a[-1]: break return (a, i, bisect_left(a, x)) def __contains__(self, x) -> bool: if self.size == 0: return False a, _, i = self._position(x) return i != len(a) and a[i] == x def count(self, x) -> int: "Count the number of x." return self.index_right(x) - self.index(x) def add(self, x) -> None: "Add an element. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return a, b, i = self._position(x) a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.SPLIT_RATIO: mid = len(a) >> 1 self.a[b:b+1] = [a[:mid], a[mid:]] def _pop(self, a, b: int, i: int): ans = a.pop(i) self.size -= 1 if not a: del self.a[b] return ans def discard(self, x) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a, b, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, b, i) return True def lt(self, x): "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x): "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x): "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x): "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int): "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1): "Pop and return the i-th element." if i < 0: for b, a in enumerate(reversed(self.a)): i += len(a) if i >= 0: return self._pop(a, ~b, i) else: for b, a in enumerate(self.a): if i < len(a): return self._pop(a, b, i) i -= len(a) raise IndexError def index(self, x) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans n, q = map(int, input().split()) P = 1 << 22 A = list(map(int, input().split())) A = [A[i]+P for i in range(n)] inf = 1 << 30 N = 300 K = SortedMultiset([]) S = [SortedMultiset(A[:min(i*N, n)] + [0, inf]) for i in range((n + N - 1) // N + 1)] t = len(S) M = [SortedMultiset([]) for _ in range(t)] T = [] for i in range(t): for j in range(len(S[i])-1): M[i].add(S[i][j+1]^S[i][j]) for _ in range(q): K = list(map(int, input().split())) if K[0] == 1: i, x = K[1:] x += P i -= 1 l = i // N + 1 px = A[i] for s in range(l, t): idx = S[s].index(px) M[s].discard(S[s][idx] ^ S[s][idx-1]) M[s].discard(S[s][idx+1] ^ S[s][idx]) S[s].discard(S[s][idx]) M[s].add(S[s][idx] ^ S[s][idx-1]) S[s].add(x) idx = S[s].index(x) M[s].discard(S[s][idx+1] ^ S[s][idx-1]) M[s].add(S[s][idx] ^ S[s][idx-1]) M[s].add(S[s][idx+1] ^ S[s][idx]) A[i] = x else: r = K[1] lt = r // N l = N * lt B = A[l: r][:] B.sort() ans = M[lt][0] for i in range(len(B)-1): ans = min(ans, B[i+1]^B[i]) for i in range(len(B)): idx = S[lt].index(B[i]) ans = min(ans, S[lt][idx]^B[i]) ans = min(ans, B[i]^S[lt][idx-1]) print(ans)