#include using namespace std; using ll=long long; const ll ILL=2167167167167167167; const int INF=2100000000; #define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++) #define all(p) p.begin(),p.end() template using _pq = priority_queue, greater>; template int LB(vector &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();} template int UB(vector &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();} template bool chmin(T &a,T b){if(b bool chmax(T &a,T b){if(a void So(vector &v) {sort(v.begin(),v.end());} template void Sore(vector &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});} bool yneos(bool a,bool upp=false){if(a){cout<<(upp?"YES\n":"Yes\n");}else{cout<<(upp?"NO\n":"No\n");}return a;} template void vec_out(vector &p,int ty=0){ if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<",";}cout<<'"'< T vec_min(vector &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;} template T vec_max(vector &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;} template T vec_sum(vector &a){T ans=T(0);for(auto &x:a) ans+=x;return ans;} int pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;} template T square(T a){return a * a;} #line 2 "multiplicative-function/prime-counting-faster.hpp" namespace PrimeCounting { using i64 = long long; static inline i64 my_div(i64 n, i64 p) { return double(n) / p; }; __attribute__((target("avx2"), optimize("O3", "unroll-loops"))) i64 prime_counting(i64 N) { i64 N2 = sqrt(N); i64 NdN2 = my_div(N, N2); vector hl(NdN2); for (int i = 1; i < NdN2; i++) hl[i] = my_div(N, i) - 1; vector hs(N2 + 1); iota(begin(hs), end(hs), -1); for (int x = 2, pi = 0; x <= N2; ++x) { if (hs[x] == hs[x - 1]) continue; i64 x2 = i64(x) * x; i64 imax = min(NdN2, my_div(N, x2) + 1); i64 ix = x; for (i64 i = 1; i < imax; ++i) { hl[i] -= (ix < NdN2 ? hl[ix] : hs[my_div(N, ix)]) - pi; ix += x; } for (int n = N2; n >= x2; n--) { hs[n] -= hs[my_div(n, x)] - pi; } ++pi; } return hl[1]; } } // namespace PrimeCounting /** * @brief 素数カウント( $\mathrm{O}(\frac{N^{\frac{3}{4}}}{\log N})$・高速化版) * @docs docs/multiplicative-function/prime-counting.md */ void solve(); // DEAR MYSTERIES / TOMOO int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int t = 1; // cin >> t; rep(i, 0, t) solve(); } void solve(){ ll L, R; cin >> L >> R; auto f = [&](ll a) -> ll { if (a <= 1) return 0; return PrimeCounting::prime_counting(a); }; cout << f(2 * R) - f(2 * L) + f(R) - f(L - 1) << "\n"; } /* * A + ... + B = (B * (B + 1) - A * (A - 1)) / 2 * = (B + A) * (B - A + 1) / 2 * A = B のとき : まーごめ * A != B のとき : B + A > 2, B - A + 1 >= 2 なので、 * B - A + 1 != 2 じゃないなら素数じゃなくなる * よって、2L 以上 2R 以下の奇素数の数が分かればいい */