// QCFium 法 //#pragma GCC target("avx2") // yukicoder では消す #pragma GCC optimize("O3") // たまにバグる #pragma GCC optimize("unroll-loops") #ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vvvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vvvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline int getb(T set, int i) { return (set >> i) & T(1); } template inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint998244353; //using mint = static_modint<(int)1e9+7>; //using mint = static_modint<1073741827>; // CRT 用 //using mint = static_modint<1073741831>; // CRT 用 //using mint = modint; // mint::set_mod(m); using vm = vector; using vvm = vector; using vvvm = vector; using vvvvm = vector; using pim = pair; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) int mute_dump = 0; int frac_print = 0; #if __has_include() namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } #endif inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_math(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); rep(i,9)cout< struct Matrix { int n, m; // 行列のサイズ(n 行 m 列) vector> v; // 行列の成分 // n×m 零行列で初期化する. Matrix(int n, int m) : n(n), m(m), v(n, vector(m)) {} // n×n 単位行列で初期化する. Matrix(int n) : n(n), m(n), v(n, vector(n)) { rep(i, n) v[i][i] = T(1); } // 二次元配列 a[0..n)[0..m) の要素で初期化する. Matrix(const vector>& a) : n(sz(a)), m(sz(a[0])), v(a) {} Matrix() : n(0), m(0) {} // 代入 Matrix(const Matrix&) = default; Matrix& operator=(const Matrix&) = default; // アクセス inline vector const& operator[](int i) const { return v[i]; } inline vector& operator[](int i) { return v[i]; } // 入力 friend istream& operator>>(istream& is, Matrix& a) { rep(i, a.n) rep(j, a.m) is >> a.v[i][j]; return is; } // 行の追加 void push_back(const vector& a) { Assert(sz(a) == m); v.push_back(a); n++; } // 行の削除 void pop_back() { Assert(n > 0); v.pop_back(); n--; } // サイズ変更 void resize(int n_) { v.resize(n_); n = n_; } void resize(int n_, int m_) { n = n_; m = m_; v.resize(n); rep(i, n) v[i].resize(m); } // 空か bool empty() const { return min(n, m) == 0; } // 比較 bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; } bool operator!=(const Matrix& b) const { return !(*this == b); } // 加算,減算,スカラー倍 Matrix& operator+=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] += b[i][j]; return *this; } Matrix& operator-=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] -= b[i][j]; return *this; } Matrix& operator*=(const T& c) { rep(i, n) rep(j, m) v[i][j] *= c; return *this; } Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; } Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; } Matrix operator*(const T& c) const { return Matrix(*this) *= c; } friend Matrix operator*(const T& c, const Matrix& a) { return a * c; } Matrix operator-() const { return Matrix(*this) *= T(-1); } // 行列ベクトル積 : O(m n) vector operator*(const vector& x) const { vector y(n); rep(i, n) rep(j, m) y[i] += v[i][j] * x[j]; return y; } // ベクトル行列積 : O(m n) friend vector operator*(const vector& x, const Matrix& a) { vector y(a.m); rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j]; return y; } // 積:O(n^3) Matrix operator*(const Matrix& b) const { Matrix res(n, b.m); rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j]; return res; } Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; } // 累乗:O(n^3 log d) Matrix pow(ll d) const { Matrix res(n), pow2 = *this; while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d >>= 1; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Matrix& a) { rep(i, a.n) { os << "["; rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1]; if (i < a.n - 1) os << "\n"; } return os; } #endif }; //【行簡約形(行交換なし)】O(n m min(n, m)) template vector row_reduced_form(Matrix& A) { int n = A.n, m = A.m; vector piv; piv.reserve(min(n, m)); // 未確定の列を記録しておくリスト list rjs; rep(j, m) rjs.push_back(j); rep(i, n) { // 第 i 行の係数を左から走査し非 0 を見つける. auto it = rjs.begin(); for (; it != rjs.end(); it++) if (A[i][*it] != 0) break; // 第 i 行の全てが 0 なら無視する. if (it == rjs.end()) continue; // A[i][j] をピボットに選択する. int j = *it; rjs.erase(it); piv.emplace_back(i, j); // A[i][j] が 1 になるよう行全体を A[i][j] で割る. T Aij_inv = T(1) / A[i][j]; repi(j2, j, m - 1) A[i][j2] *= Aij_inv; // 第 i 行以外の第 j 列の成分が全て 0 になるよう第 i 行を定数倍して減じる. rep(i2, n) if (A[i2][j] != 0 && i2 != i) { T mul = A[i2][j]; repi(j2, j, m - 1) A[i2][j2] -= A[i][j2] * mul; } } return piv; } //【逆行列】O(n^3) template Matrix inverse_matrix(const Matrix& mat) { int n = mat.n; // 元の行列 mat と単位行列を繋げた拡大行列 v を作る. vector> v(n, vector(2 * n)); rep(i, n) rep(j, n) { v[i][j] = mat[i][j]; if (i == j) v[i][n + j] = 1; } int m = 2 * n; // 注目位置を (i, j)(i 行目かつ j 列目)とする. int i = 0, j = 0; // 拡大行列に対して行基本変形を行い,左側を単位行列にすることを目指す. while (i < n && j < m) { // 同じ列の下方の行から非 0 成分を見つける. int i2 = i; while (i2 < n && v[i2][j] == T(0)) i2++; // 見つからなかったら全て 0 の列があったので mat は非正則 if (i2 == n) return Matrix(); // 見つかったら i 行目とその行を入れ替える. if (i != i2) swap(v[i], v[i2]); // v[i][j] が 1 になるよう行全体を v[i][j] で割る. T vij_inv = T(1) / v[i][j]; repi(j2, j, m - 1) v[i][j2] *= vij_inv; // v[i][j] と同じ列の成分が全て 0 になるよう i 行目を定数倍して減じる. rep(i2, n) { // i 行目だけは引かない. if (i2 == i) continue; T mul = v[i2][j]; repi(j2, j, m - 1) v[i2][j2] -= v[i][j2] * mul; } // 注目位置を右下に移す. i++; j++; } // 拡大行列の右半分が mat の逆行列なのでコピーする. Matrix mat_inv(n, n); rep(i, n) rep(j, n) mat_inv[i][j] = v[i][n + j]; return mat_inv; } // 遷移行列の係数を計算し,埋め込み用のコードを出力する. // 失敗したら len_min を指定する.待てない場合は len_max とか LB_max とかを指定する. tuple embed_coefs(int COL, int len_min = 0, int len_max = INF, int LB_max = INF) { vector ss{""}; int idx = 0; int PDIM = -1; repi(len, 0, INF) { dump("----------- len:", len, "--------------"); // 中央用の文字列と両端用の文字列に整形する. vector ssT; vector> ssB; ssT = ss; repe(sL, ss) repe(sR, ss) ssB.push_back({ sL, sR }); int LT = sz(ssT); int LB = min(sz(ssB), LB_max); dump("LT:", LT); // (i,j) 成分が naive(sL[j] + ssT[i] + sR[j]) であるような行列 mat を得る. Matrix mat(LT, LB); rep(i, LT) rep(j, LB) { auto [sL, sR] = ssB[j]; mat[i][j] = naive(sL + ssT[i] + sR); } //dump("mat:"); dump(mat); // mat に対して行基本変形を行いピボット位置のリスト piv を得る. auto piv = row_reduced_form(mat); int DIM = sz(piv); dump("piv[0.." + to_string(DIM) + "):"); dump(piv); // rank の更新がなかったら必要な情報は揃ったとみなして打ち切る(たまに失敗する) if (len == len_max || (len >= len_min && DIM == PDIM)) { int DIM = sz(piv); // 選択した行と列をそれぞれ昇順に並べて is, js とする(0 始まりのはず) vi is(DIM), js(DIM); rep(r, DIM) tie(is[r], js[r]) = piv[r]; sort(all(js)); // 基底の変換行列 P を得る. Matrix matP(DIM, DIM); rep(i_, DIM) rep(j_, DIM) { int i = is[i_]; int j = js[j_]; auto [sL, sR] = ssB[j]; matP[i_][j_] = naive(sL + ssT[i] + sR); } // P の逆行列 P_inv を得る. auto matP_inv = inverse_matrix(matP); // 各文字に対応する初期ベクトルを得る. vvm vecIs(COL, vm(DIM)); rep(c, COL) { char ch = '0' + c; rep(j_, DIM) { int j = js[j_]; auto [sL, sR] = ssB[j]; vecIs[c][j_] = naive(sL + ch + sR); } vecIs[c] = vecIs[c] * matP_inv; } // merge の表現テンソルを得る. vvvm tsrM(DIM, vvm(DIM, vm(DIM))); rep(i1_, DIM) rep(i2_, DIM) { int i1 = is[i1_]; int i2 = is[i2_]; rep(j_, DIM) { int j = js[j_]; auto [sL, sR] = ssB[j]; tsrM[i1_][i2_][j_] = naive(sL + ssT[i1] + ssT[i2] + sR); } tsrM[i1_][i2_] = tsrM[i1_][i2_] * matP_inv; } // 根を閉じるためのベクトルを得る. vm vecP(DIM); rep(i, DIM) vecP[i] = matP[i][0]; // 埋め込み用の文字列を出力する. auto to_signed_string = [](mint x) { int v = x.val(); int mod = mint::mod(); if (v > mod / 2) v -= mod; return to_string(v); }; string eb = "\n"; eb += "constexpr int DIM = "; eb += to_string(DIM); eb += ";\n"; eb += "constexpr int COL = "; eb += to_string(COL); eb += ";\n"; eb += "using VEC = array;\n"; eb += "VEC vecIs[COL] = {"; rep(c, COL) { eb += "{"; rep(j, DIM) eb += to_signed_string(vecIs[c][j]) + ","; eb.pop_back(); eb += "},"; } eb.pop_back(); eb += "};\n"; eb += "VEC opVEC(VEC x, VEC y) {\n"; eb += "VEC z; z.fill(0);\n"; rep(j, DIM) { rep(i1, DIM) rep(i2, DIM) { if (tsrM[i1][i2][j] == 0) continue; eb += "z["; eb += to_string(j); eb += "]+="; eb += to_signed_string(tsrM[i1][i2][j]); eb += "*x["; eb += to_string(i1); eb += "]*y["; eb += to_string(i2); eb += "];"; } eb += "\n"; } eb += "return z;\n"; eb += "}\n"; eb += "VEC eVEC() {\n"; eb += "VEC z; z.fill(0); z[0]=1;\n"; eb += "return z;\n"; eb += "}\n"; eb += "VTYPE to_ans(VEC x) {\n"; eb += "VTYPE ans = 0;\n"; rep(i, DIM) { if (vecP[i] == 0) continue; eb += "ans+="; eb += to_signed_string(vecP[i]); eb += "*x["; eb += to_string(i); eb += "];"; } eb += "return ans;\n"; eb += "}\n"; eb += "using SEG = segtree;\n"; cout << eb; exit(0); return { vecIs, tsrM, vecP }; } // 基底ガチャ //mt19937_64 mt((int)time(NULL)); shuffle(ss.begin() + idx, ss.end(), mt); // 次に長い文字列たちを ss に追加する. int nidx = sz(ss); repi(i, idx, nidx - 1) rep(c, COL) { ss.push_back(ss[i]); ss.back().push_back('0' + c); } idx = nidx; PDIM = DIM; } return tuple(); } using VTYPE = mint; // --------------- embed_coefs() からの出力を貼る ---------------- constexpr int DIM = 10; constexpr int COL = 2; using VEC = array; VEC vecIs[COL] = { {0,1,0,0,0,0,0,0,0,0},{0,0,1,0,0,0,0,0,0,0} }; VEC opVEC(VEC x, VEC y) { VEC z; z.fill(0); z[0] += 1 * x[0] * y[0]; z[0] += 1 * x[1] * y[3]; z[0] += 1 * x[1] * y[6]; z[0] += 1 * x[2] * y[3]; z[0] += 1 * x[2] * y[6]; z[0] += 1 * x[3] * y[1]; z[0] += 3 * x[3] * y[3]; z[0] += 1 * x[3] * y[6]; z[0] += 1 * x[4] * y[2]; z[0] += 1 * x[4] * y[3]; z[0] += 3 * x[4] * y[6]; z[0] += -1 * x[4] * y[7]; z[0] += -1 * x[4] * y[8]; z[0] += -2 * x[4] * y[9]; z[0] += 1 * x[5] * y[1]; z[0] += 3 * x[5] * y[3]; z[0] += 1 * x[5] * y[6]; z[0] += 1 * x[6] * y[2]; z[0] += 1 * x[6] * y[3]; z[0] += 3 * x[6] * y[6]; z[0] += -1 * x[6] * y[7]; z[0] += -1 * x[6] * y[8]; z[0] += -2 * x[6] * y[9]; z[0] += 1 * x[7] * y[2]; z[0] += 1 * x[7] * y[3]; z[0] += -1 * x[7] * y[4]; z[0] += -1 * x[7] * y[5]; z[0] += 3 * x[7] * y[6]; z[0] += -3 * x[7] * y[7]; z[0] += -3 * x[7] * y[8]; z[0] += -5 * x[7] * y[9]; z[0] += 1 * x[8] * y[1]; z[0] += 3 * x[8] * y[3]; z[0] += -1 * x[8] * y[4]; z[0] += -1 * x[8] * y[5]; z[0] += 1 * x[8] * y[6]; z[0] += -2 * x[8] * y[7]; z[0] += -2 * x[8] * y[8]; z[0] += -3 * x[8] * y[9]; z[0] += 1 * x[9] * y[1]; z[0] += -1 * x[9] * y[2]; z[0] += 3 * x[9] * y[3]; z[0] += -3 * x[9] * y[4]; z[0] += -3 * x[9] * y[5]; z[0] += -1 * x[9] * y[6]; z[0] += -5 * x[9] * y[7]; z[0] += -5 * x[9] * y[8]; z[0] += -7 * x[9] * y[9]; z[1] += 1 * x[0] * y[1]; z[1] += 1 * x[1] * y[0]; z[1] += -3 * x[1] * y[3]; z[1] += -1 * x[1] * y[6]; z[1] += -2 * x[2] * y[3]; z[1] += 1 * x[2] * y[4]; z[1] += 1 * x[2] * y[5]; z[1] += 2 * x[2] * y[7]; z[1] += 2 * x[2] * y[8]; z[1] += 3 * x[2] * y[9]; z[1] += -3 * x[3] * y[1]; z[1] += -8 * x[3] * y[3]; z[1] += -1 * x[4] * y[2]; z[1] += -2 * x[4] * y[3]; z[1] += 2 * x[4] * y[4]; z[1] += 2 * x[4] * y[5]; z[1] += -2 * x[4] * y[6]; z[1] += 5 * x[4] * y[7]; z[1] += 5 * x[4] * y[8]; z[1] += 8 * x[4] * y[9]; z[1] += -2 * x[5] * y[1]; z[1] += 1 * x[5] * y[2]; z[1] += -6 * x[5] * y[3]; z[1] += 2 * x[5] * y[4]; z[1] += 2 * x[5] * y[5]; z[1] += 2 * x[5] * y[6]; z[1] += 3 * x[5] * y[7]; z[1] += 3 * x[5] * y[8]; z[1] += 4 * x[5] * y[9]; z[1] += 1 * x[6] * y[1]; z[1] += 4 * x[6] * y[4]; z[1] += 4 * x[6] * y[5]; z[1] += 8 * x[6] * y[7]; z[1] += 8 * x[6] * y[8]; z[1] += 12 * x[6] * y[9]; z[1] += -2 * x[7] * y[3]; z[1] += 5 * x[7] * y[4]; z[1] += 5 * x[7] * y[5]; z[1] += 10 * x[7] * y[7]; z[1] += 10 * x[7] * y[8]; z[1] += 15 * x[7] * y[9]; z[1] += -2 * x[8] * y[1]; z[1] += 2 * x[8] * y[2]; z[1] += -6 * x[8] * y[3]; z[1] += 5 * x[8] * y[4]; z[1] += 5 * x[8] * y[5]; z[1] += 4 * x[8] * y[6]; z[1] += 8 * x[8] * y[7]; z[1] += 8 * x[8] * y[8]; z[1] += 11 * x[8] * y[9]; z[1] += -2 * x[9] * y[1]; z[1] += 5 * x[9] * y[2]; z[1] += -6 * x[9] * y[3]; z[1] += 10 * x[9] * y[4]; z[1] += 10 * x[9] * y[5]; z[1] += 10 * x[9] * y[6]; z[1] += 15 * x[9] * y[7]; z[1] += 15 * x[9] * y[8]; z[1] += 20 * x[9] * y[9]; z[2] += 1 * x[0] * y[2]; z[2] += -2 * x[1] * y[6]; z[2] += 1 * x[1] * y[7]; z[2] += 1 * x[2] * y[0]; z[2] += -1 * x[2] * y[3]; z[2] += -1 * x[2] * y[4]; z[2] += -1 * x[2] * y[5]; z[2] += -3 * x[2] * y[6]; z[2] += -1 * x[2] * y[7]; z[2] += -2 * x[2] * y[8]; z[2] += -3 * x[2] * y[9]; z[2] += 1 * x[3] * y[4]; z[2] += -3 * x[3] * y[6]; z[2] += 3 * x[3] * y[7]; z[2] += -2 * x[4] * y[2]; z[2] += -1 * x[4] * y[3]; z[2] += -2 * x[4] * y[4]; z[2] += -1 * x[4] * y[5]; z[2] += -6 * x[4] * y[6]; z[2] += -2 * x[4] * y[7]; z[2] += -3 * x[4] * y[8]; z[2] += -6 * x[4] * y[9]; z[2] += -1 * x[5] * y[1]; z[2] += -1 * x[5] * y[2]; z[2] += -2 * x[5] * y[3]; z[2] += -1 * x[5] * y[4]; z[2] += -2 * x[5] * y[5]; z[2] += -5 * x[5] * y[6]; z[2] += -3 * x[5] * y[8]; z[2] += -4 * x[5] * y[9]; z[2] += -1 * x[6] * y[1]; z[2] += -3 * x[6] * y[2]; z[2] += -3 * x[6] * y[3]; z[2] += -4 * x[6] * y[4]; z[2] += -3 * x[6] * y[5]; z[2] += -8 * x[6] * y[6]; z[2] += -5 * x[6] * y[7]; z[2] += -6 * x[6] * y[8]; z[2] += -10 * x[6] * y[9]; z[2] += -3 * x[7] * y[2]; z[2] += -2 * x[7] * y[3]; z[2] += -3 * x[7] * y[4]; z[2] += -2 * x[7] * y[5]; z[2] += -9 * x[7] * y[6]; z[2] += -4 * x[7] * y[7]; z[2] += -6 * x[7] * y[8]; z[2] += -12 * x[7] * y[9]; z[2] += -1 * x[8] * y[1]; z[2] += -2 * x[8] * y[2]; z[2] += -3 * x[8] * y[3]; z[2] += -2 * x[8] * y[4]; z[2] += -3 * x[8] * y[5]; z[2] += -8 * x[8] * y[6]; z[2] += -2 * x[8] * y[7]; z[2] += -6 * x[8] * y[8]; z[2] += -10 * x[8] * y[9]; z[2] += -2 * x[9] * y[1]; z[2] += -3 * x[9] * y[2]; z[2] += -6 * x[9] * y[3]; z[2] += -4 * x[9] * y[4]; z[2] += -6 * x[9] * y[5]; z[2] += -12 * x[9] * y[6]; z[2] += -6 * x[9] * y[7]; z[2] += -12 * x[9] * y[8]; z[2] += -20 * x[9] * y[9]; z[3] += 1 * x[0] * y[3]; z[3] += 1 * x[1] * y[1]; z[3] += 3 * x[1] * y[3]; z[3] += 1 * x[2] * y[3]; z[3] += -1 * x[2] * y[4]; z[3] += -1 * x[2] * y[5]; z[3] += -2 * x[2] * y[7]; z[3] += -2 * x[2] * y[8]; z[3] += -3 * x[2] * y[9]; z[3] += 1 * x[3] * y[0]; z[3] += 3 * x[3] * y[1]; z[3] += 6 * x[3] * y[3]; z[3] += -1 * x[3] * y[6]; z[3] += 1 * x[4] * y[3]; z[3] += -2 * x[4] * y[4]; z[3] += -2 * x[4] * y[5]; z[3] += -4 * x[4] * y[7]; z[3] += -4 * x[4] * y[8]; z[3] += -6 * x[4] * y[9]; z[3] += 1 * x[5] * y[1]; z[3] += -1 * x[5] * y[2]; z[3] += 3 * x[5] * y[3]; z[3] += -2 * x[5] * y[4]; z[3] += -2 * x[5] * y[5]; z[3] += -2 * x[5] * y[6]; z[3] += -3 * x[5] * y[7]; z[3] += -3 * x[5] * y[8]; z[3] += -4 * x[5] * y[9]; z[3] += -1 * x[6] * y[1]; z[3] += -1 * x[6] * y[3]; z[3] += -3 * x[6] * y[4]; z[3] += -3 * x[6] * y[5]; z[3] += -6 * x[6] * y[7]; z[3] += -6 * x[6] * y[8]; z[3] += -9 * x[6] * y[9]; z[3] += -1 * x[7] * y[2]; z[3] += 1 * x[7] * y[3]; z[3] += -4 * x[7] * y[4]; z[3] += -4 * x[7] * y[5]; z[3] += -2 * x[7] * y[6]; z[3] += -7 * x[7] * y[7]; z[3] += -7 * x[7] * y[8]; z[3] += -10 * x[7] * y[9]; z[3] += 1 * x[8] * y[1]; z[3] += -2 * x[8] * y[2]; z[3] += 3 * x[8] * y[3]; z[3] += -4 * x[8] * y[4]; z[3] += -4 * x[8] * y[5]; z[3] += -4 * x[8] * y[6]; z[3] += -6 * x[8] * y[7]; z[3] += -6 * x[8] * y[8]; z[3] += -8 * x[8] * y[9]; z[3] += 1 * x[9] * y[1]; z[3] += -4 * x[9] * y[2]; z[3] += 3 * x[9] * y[3]; z[3] += -7 * x[9] * y[4]; z[3] += -7 * x[9] * y[5]; z[3] += -8 * x[9] * y[6]; z[3] += -10 * x[9] * y[7]; z[3] += -10 * x[9] * y[8]; z[3] += -13 * x[9] * y[9]; z[4] += 1 * x[0] * y[4]; z[4] += 1 * x[1] * y[2]; z[4] += 3 * x[1] * y[6]; z[4] += -3 * x[1] * y[7]; z[4] += 1 * x[2] * y[3]; z[4] += -2 * x[2] * y[5]; z[4] += -1 * x[2] * y[7]; z[4] += 3 * x[2] * y[9]; z[4] += -3 * x[3] * y[4]; z[4] += 4 * x[3] * y[6]; z[4] += -8 * x[3] * y[7]; z[4] += 1 * x[4] * y[0]; z[4] += 3 * x[4] * y[2]; z[4] += 2 * x[4] * y[3]; z[4] += 2 * x[4] * y[4]; z[4] += -1 * x[4] * y[5]; z[4] += 6 * x[4] * y[6]; z[4] += 2 * x[4] * y[7]; z[4] += 4 * x[4] * y[8]; z[4] += 12 * x[4] * y[9]; z[4] += 1 * x[5] * y[1]; z[4] += 3 * x[5] * y[3]; z[4] += -1 * x[5] * y[4]; z[4] += 3 * x[5] * y[6]; z[4] += -3 * x[5] * y[7]; z[4] += 3 * x[5] * y[8]; z[4] += 7 * x[5] * y[9]; z[4] += -2 * x[6] * y[1]; z[4] += -1 * x[6] * y[4]; z[4] += -6 * x[6] * y[5]; z[4] += 10 * x[6] * y[9]; z[4] += 4 * x[7] * y[2]; z[4] += 5 * x[7] * y[3]; z[4] += 4 * x[7] * y[4]; z[4] += 2 * x[7] * y[5]; z[4] += 12 * x[7] * y[6]; z[4] += 7 * x[7] * y[7]; z[4] += 12 * x[7] * y[8]; z[4] += 27 * x[7] * y[9]; z[4] += 2 * x[8] * y[1]; z[4] += 2 * x[8] * y[2]; z[4] += 7 * x[8] * y[3]; z[4] += 2 * x[8] * y[4]; z[4] += 4 * x[8] * y[5]; z[4] += 10 * x[8] * y[6]; z[4] += 3 * x[8] * y[7]; z[4] += 12 * x[8] * y[8]; z[4] += 23 * x[8] * y[9]; z[4] += 5 * x[9] * y[1]; z[4] += 4 * x[9] * y[2]; z[4] += 15 * x[9] * y[3]; z[4] += 7 * x[9] * y[4]; z[4] += 12 * x[9] * y[5]; z[4] += 19 * x[9] * y[6]; z[4] += 13 * x[9] * y[7]; z[4] += 27 * x[9] * y[8]; z[4] += 47 * x[9] * y[9]; z[5] += 1 * x[0] * y[5]; z[5] += -1 * x[1] * y[6]; z[5] += 1 * x[1] * y[9]; z[5] += 1 * x[2] * y[1]; z[5] += 1 * x[2] * y[3]; z[5] += 2 * x[2] * y[5]; z[5] += -1 * x[2] * y[7]; z[5] += 1 * x[2] * y[8]; z[5] += -1 * x[3] * y[6]; z[5] += 1 * x[3] * y[8]; z[5] += 3 * x[3] * y[9]; z[5] += -1 * x[4] * y[2]; z[5] += -1 * x[4] * y[4]; z[5] += -1 * x[4] * y[5]; z[5] += -3 * x[4] * y[6]; z[5] += -1 * x[4] * y[7]; z[5] += 2 * x[4] * y[9]; z[5] += 1 * x[5] * y[0]; z[5] += 1 * x[5] * y[1]; z[5] += -1 * x[5] * y[4]; z[5] += 1 * x[5] * y[5]; z[5] += -1 * x[5] * y[6]; z[5] += -3 * x[5] * y[7]; z[5] += -1 * x[5] * y[9]; z[5] += 2 * x[6] * y[1]; z[5] += 3 * x[6] * y[3]; z[5] += 1 * x[6] * y[4]; z[5] += 3 * x[6] * y[5]; z[5] += 1 * x[6] * y[7]; z[5] += 4 * x[6] * y[8]; z[5] += 5 * x[6] * y[9]; z[5] += -1 * x[7] * y[2]; z[5] += 1 * x[7] * y[3]; z[5] += -1 * x[7] * y[5]; z[5] += -3 * x[7] * y[6]; z[5] += 2 * x[7] * y[7]; z[5] += 3 * x[7] * y[8]; z[5] += 9 * x[7] * y[9]; z[5] += -1 * x[8] * y[2]; z[5] += -1 * x[8] * y[4]; z[5] += -2 * x[8] * y[6]; z[5] += -1 * x[8] * y[7]; z[5] += 2 * x[8] * y[8]; z[5] += 5 * x[8] * y[9]; z[5] += 1 * x[9] * y[1]; z[5] += 3 * x[9] * y[3]; z[5] += 2 * x[9] * y[4]; z[5] += 3 * x[9] * y[5]; z[5] += 1 * x[9] * y[6]; z[5] += 5 * x[9] * y[7]; z[5] += 9 * x[9] * y[8]; z[5] += 17 * x[9] * y[9]; z[6] += 1 * x[0] * y[6]; z[6] += 1 * x[1] * y[6]; z[6] += 1 * x[2] * y[2]; z[6] += 1 * x[2] * y[4]; z[6] += 1 * x[2] * y[5]; z[6] += 3 * x[2] * y[6]; z[6] += 1 * x[2] * y[7]; z[6] += 1 * x[2] * y[8]; z[6] += 1 * x[2] * y[9]; z[6] += 1 * x[3] * y[6]; z[6] += 1 * x[4] * y[2]; z[6] += 1 * x[4] * y[4]; z[6] += 1 * x[4] * y[5]; z[6] += 3 * x[4] * y[6]; z[6] += 1 * x[4] * y[7]; z[6] += 1 * x[4] * y[8]; z[6] += 1 * x[4] * y[9]; z[6] += 1 * x[5] * y[2]; z[6] += 1 * x[5] * y[4]; z[6] += 1 * x[5] * y[5]; z[6] += 3 * x[5] * y[6]; z[6] += 1 * x[5] * y[7]; z[6] += 1 * x[5] * y[8]; z[6] += 1 * x[5] * y[9]; z[6] += 1 * x[6] * y[0]; z[6] += 1 * x[6] * y[1]; z[6] += 3 * x[6] * y[2]; z[6] += 1 * x[6] * y[3]; z[6] += 3 * x[6] * y[4]; z[6] += 3 * x[6] * y[5]; z[6] += 6 * x[6] * y[6]; z[6] += 3 * x[6] * y[7]; z[6] += 3 * x[6] * y[8]; z[6] += 3 * x[6] * y[9]; z[6] += 1 * x[7] * y[2]; z[6] += 1 * x[7] * y[4]; z[6] += 1 * x[7] * y[5]; z[6] += 3 * x[7] * y[6]; z[6] += 1 * x[7] * y[7]; z[6] += 1 * x[7] * y[8]; z[6] += 1 * x[7] * y[9]; z[6] += 1 * x[8] * y[2]; z[6] += 1 * x[8] * y[4]; z[6] += 1 * x[8] * y[5]; z[6] += 3 * x[8] * y[6]; z[6] += 1 * x[8] * y[7]; z[6] += 1 * x[8] * y[8]; z[6] += 1 * x[8] * y[9]; z[6] += 1 * x[9] * y[2]; z[6] += 1 * x[9] * y[4]; z[6] += 1 * x[9] * y[5]; z[6] += 3 * x[9] * y[6]; z[6] += 1 * x[9] * y[7]; z[6] += 1 * x[9] * y[8]; z[6] += 1 * x[9] * y[9]; z[7] += 1 * x[0] * y[7]; z[7] += 1 * x[1] * y[4]; z[7] += -1 * x[1] * y[6]; z[7] += 3 * x[1] * y[7]; z[7] += -1 * x[2] * y[3]; z[7] += 1 * x[2] * y[5]; z[7] += -1 * x[2] * y[8]; z[7] += -4 * x[2] * y[9]; z[7] += 1 * x[3] * y[2]; z[7] += 3 * x[3] * y[4]; z[7] += -1 * x[3] * y[6]; z[7] += 6 * x[3] * y[7]; z[7] += -1 * x[4] * y[2]; z[7] += -2 * x[4] * y[3]; z[7] += -1 * x[4] * y[4]; z[7] += -3 * x[4] * y[6]; z[7] += -2 * x[4] * y[7]; z[7] += -4 * x[4] * y[8]; z[7] += -10 * x[4] * y[9]; z[7] += -1 * x[5] * y[1]; z[7] += -3 * x[5] * y[3]; z[7] += -1 * x[5] * y[5]; z[7] += -2 * x[5] * y[6]; z[7] += -4 * x[5] * y[8]; z[7] += -8 * x[5] * y[9]; z[7] += 1 * x[6] * y[1]; z[7] += -1 * x[6] * y[3]; z[7] += 3 * x[6] * y[5]; z[7] += -2 * x[6] * y[7]; z[7] += -2 * x[6] * y[8]; z[7] += -10 * x[6] * y[9]; z[7] += 1 * x[7] * y[0]; z[7] += -1 * x[7] * y[2]; z[7] += -4 * x[7] * y[3]; z[7] += -2 * x[7] * y[4]; z[7] += -2 * x[7] * y[5]; z[7] += -6 * x[7] * y[6]; z[7] += -5 * x[7] * y[7]; z[7] += -9 * x[7] * y[8]; z[7] += -19 * x[7] * y[9]; z[7] += -2 * x[8] * y[1]; z[7] += -1 * x[8] * y[2]; z[7] += -6 * x[8] * y[3]; z[7] += -2 * x[8] * y[4]; z[7] += -4 * x[8] * y[5]; z[7] += -6 * x[8] * y[6]; z[7] += -4 * x[8] * y[7]; z[7] += -10 * x[8] * y[8]; z[7] += -18 * x[8] * y[9]; z[7] += -4 * x[9] * y[1]; z[7] += -2 * x[9] * y[2]; z[7] += -11 * x[9] * y[3]; z[7] += -5 * x[9] * y[4]; z[7] += -9 * x[9] * y[5]; z[7] += -11 * x[9] * y[6]; z[7] += -10 * x[9] * y[7]; z[7] += -19 * x[9] * y[8]; z[7] += -32 * x[9] * y[9]; z[8] += 1 * x[0] * y[8]; z[8] += 1 * x[1] * y[5]; z[8] += 1 * x[1] * y[6]; z[8] += -3 * x[1] * y[9]; z[8] += 1 * x[2] * y[3]; z[8] += 1 * x[2] * y[4]; z[8] += 3 * x[2] * y[7]; z[8] += 1 * x[2] * y[8]; z[8] += 1 * x[2] * y[9]; z[8] += -3 * x[3] * y[8]; z[8] += -8 * x[3] * y[9]; z[8] += 1 * x[4] * y[1]; z[8] += 1 * x[4] * y[2]; z[8] += 1 * x[4] * y[3]; z[8] += 1 * x[4] * y[4]; z[8] += 3 * x[4] * y[5]; z[8] += 3 * x[4] * y[6]; z[8] += -1 * x[4] * y[8]; z[8] += -8 * x[4] * y[9]; z[8] += 1 * x[5] * y[1]; z[8] += 1 * x[5] * y[2]; z[8] += 3 * x[5] * y[3]; z[8] += 3 * x[5] * y[4]; z[8] += 1 * x[5] * y[5]; z[8] += 1 * x[5] * y[6]; z[8] += 6 * x[5] * y[7]; z[8] += 1 * x[5] * y[8]; z[8] += -3 * x[6] * y[8]; z[8] += -8 * x[6] * y[9]; z[8] += -3 * x[7] * y[3]; z[8] += -3 * x[7] * y[4]; z[8] += -9 * x[7] * y[7]; z[8] += -11 * x[7] * y[8]; z[8] += -27 * x[7] * y[9]; z[8] += 1 * x[8] * y[0]; z[8] += 1 * x[8] * y[1]; z[8] += 1 * x[8] * y[2]; z[8] += -1 * x[8] * y[5]; z[8] += -1 * x[8] * y[6]; z[8] += -2 * x[8] * y[7]; z[8] += -8 * x[8] * y[8]; z[8] += -18 * x[8] * y[9]; z[8] += -3 * x[9] * y[1]; z[8] += -3 * x[9] * y[2]; z[8] += -9 * x[9] * y[3]; z[8] += -9 * x[9] * y[4]; z[8] += -11 * x[9] * y[5]; z[8] += -11 * x[9] * y[6]; z[8] += -18 * x[9] * y[7]; z[8] += -27 * x[9] * y[8]; z[8] += -48 * x[9] * y[9]; z[9] += 1 * x[0] * y[9]; z[9] += 1 * x[1] * y[8]; z[9] += 3 * x[1] * y[9]; z[9] += 1 * x[2] * y[8]; z[9] += 3 * x[2] * y[9]; z[9] += 1 * x[3] * y[5]; z[9] += 1 * x[3] * y[6]; z[9] += 3 * x[3] * y[8]; z[9] += 6 * x[3] * y[9]; z[9] += 1 * x[4] * y[3]; z[9] += 1 * x[4] * y[4]; z[9] += 3 * x[4] * y[7]; z[9] += 4 * x[4] * y[8]; z[9] += 10 * x[4] * y[9]; z[9] += 1 * x[5] * y[5]; z[9] += 1 * x[5] * y[6]; z[9] += 3 * x[5] * y[8]; z[9] += 6 * x[5] * y[9]; z[9] += 1 * x[6] * y[3]; z[9] += 1 * x[6] * y[4]; z[9] += 3 * x[6] * y[7]; z[9] += 4 * x[6] * y[8]; z[9] += 10 * x[6] * y[9]; z[9] += 1 * x[7] * y[1]; z[9] += 1 * x[7] * y[2]; z[9] += 4 * x[7] * y[3]; z[9] += 4 * x[7] * y[4]; z[9] += 3 * x[7] * y[5]; z[9] += 3 * x[7] * y[6]; z[9] += 9 * x[7] * y[7]; z[9] += 11 * x[7] * y[8]; z[9] += 22 * x[7] * y[9]; z[9] += 1 * x[8] * y[1]; z[9] += 1 * x[8] * y[2]; z[9] += 3 * x[8] * y[3]; z[9] += 3 * x[8] * y[4]; z[9] += 4 * x[8] * y[5]; z[9] += 4 * x[8] * y[6]; z[9] += 6 * x[8] * y[7]; z[9] += 10 * x[8] * y[8]; z[9] += 18 * x[8] * y[9]; z[9] += 1 * x[9] * y[0]; z[9] += 4 * x[9] * y[1]; z[9] += 4 * x[9] * y[2]; z[9] += 9 * x[9] * y[3]; z[9] += 9 * x[9] * y[4]; z[9] += 11 * x[9] * y[5]; z[9] += 11 * x[9] * y[6]; z[9] += 16 * x[9] * y[7]; z[9] += 22 * x[9] * y[8]; z[9] += 36 * x[9] * y[9]; return z; } VEC eVEC() { VEC z; z.fill(0); z[0] = 1; return z; } VTYPE to_ans(VEC x) { VTYPE ans = 0; ans += 1 * x[4]; ans += 1 * x[5]; ans += 3 * x[7]; ans += 4 * x[8]; ans += 9 * x[9]; return ans; } using SEG = segtree; // -------------------------------------------------------------- int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); //【方法】 // 愚直を書いて集めたデータをもとに遷移行列を復元する. //【使い方】 // 1. mint naive(文字列) を実装する. // 2. embed_coefs(文字の種類数); を実行する. // 3. 出力を solve() の上に貼る. // 4. 型 VTYPE を決め,seg.prod(l,r) で勝手に DP してくれる. // embed_coefs(2, 0, INF, INF); int n, q; string s; cin >> n >> q >> s; rep(i, n) { if (s[i] == '0') s[i] = '0'; else if (s[i] == '1') s[i] = '1'; } vector ini(n); rep(i, n) ini[i] = vecIs[s[i] - '0']; SEG seg(ini); rep(hoge, q) { int tp; cin >> tp; if (tp == 1) { int i; cin >> i; i--; s[i] ^= 1; seg.set(i, vecIs[s[i] - '0']); } else { int l, r; cin >> l >> r; l--; auto vec = seg.prod(l, r); cout << to_ans(vec) << "\n"; } } } /* ----------- len: 0 -------------- LT: 1 piv[0..0): ----------- len: 1 -------------- LT: 3 piv[0..3): (0,5) (1,2) (2,1) ----------- len: 2 -------------- LT: 7 piv[0..7): (0,4) (1,2) (2,1) (3,11) (4,0) (5,7) (6,8) ----------- len: 3 -------------- LT: 15 piv[0..9): (0,4) (1,2) (2,1) (3,8) (4,0) (5,15) (6,16) (8,17) (9,3) ----------- len: 4 -------------- LT: 31 piv[0..10): (0,4) (1,2) (2,1) (3,8) (4,0) (5,31) (6,32) (8,33) (9,3) (17,62) ----------- len: 5 -------------- LT: 63 piv[0..10): (0,4) (1,2) (2,1) (3,8) (4,0) (5,63) (6,64) (8,65) (9,3) (17,126) */