import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintStream; import java.io.PrintWriter; import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; import java.lang.reflect.Array; import java.math.BigInteger; import java.nio.file.Files; import java.nio.file.OpenOption; import java.nio.file.Path; import java.nio.file.Paths; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.Comparator; import java.util.Deque; import java.util.HashMap; import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.NoSuchElementException; import java.util.Optional; import java.util.Queue; import java.util.Random; import java.util.Set; import java.util.TreeMap; import java.util.TreeSet; import java.util.function.BiFunction; import java.util.function.Consumer; import java.util.function.DoubleUnaryOperator; import java.util.function.IntBinaryOperator; import java.util.function.IntFunction; import java.util.function.IntToDoubleFunction; import java.util.function.IntToLongFunction; import java.util.function.IntUnaryOperator; import java.util.function.LongBinaryOperator; import java.util.function.LongToDoubleFunction; import java.util.function.Predicate; import java.util.function.Supplier; import java.util.function.ToIntFunction; import java.util.random.RandomGenerator; import java.util.stream.IntStream; import java.util.stream.Stream; class Matrix { /** * B = P⁻¹AP s.t. B[i][j] = 0 if i ≥ j + 2 となる B を返す。 * * @param A * @param mod * @return */ public static long[][] hessenbergReductionOnFp(long[][] A, long mod) { /* 左から掛けたとき、i行目にj行目を足す行列 P がある。 P = [1 1] [0 1] それに対して P⁻¹ は右から掛けるとj列目にi列目が(-1)倍して足される。 P = [1 -1] [0 1] 左から掛けたとき、i行目とj行目をswapする行列 P がある。 P = [0 1] [1 0] それに対して P⁻¹ = Pは右から掛けるとi列目とi列目がswapされる。 P = [0 1] [1 0] */ long[][] B = ArrayUtils.copy(A); if (B.length != B[0].length) { throw new AssertionError(); } int N = B.length; for (int i = 0; i < (N - 2); i++) { int p = i + 1; while ((p < N) && (B[p][i] == 0)) { ++p; } if (p == N) { continue; } if ((i + 1) != p) { ArrayUtils.swap(B[i + 1], B[p]); ArrayUtils.swapColumns(i + 1, p, B); } // A[i+1][i] ≠ 0 long inv = MathUtils.modInv(B[i + 1][i], mod); for (int j = i + 2; j < N; j++) { long c = (inv * B[j][i]) % mod; for (int k = 0; k < N; k++) { B[j][k] = (B[j][k] + (B[i + 1][k] * (mod - c))) % mod; } for (int k = 0; k < N; k++) { B[k][i + 1] = (B[k][i + 1] + (B[k][j] * c)) % mod;// i列目ではなく、i+1列目に足されるのでok } } } return B; } /** * det(Ix-A) * * @param A * @param mod * @return https://judge.yosupo.jp/submission/344336 */ public static long[] characteristicPolynomialOnFp(long[][] A, long mod) { if (A.length == 0) { return new long[]{ 1 }; } if (A.length != A[0].length) { throw new AssertionError(); } long[][] B = Matrix.hessenbergReductionOnFp(A, mod); int N = A.length; long[][] f = new long[N + 1][N + 1]; for (int i = 0; i < f.length; i++) { f[i][i] = 1; } // f[i][j] = Π A[k+1][k] for i ≤ k < j for (int w = 1; w <= N; ++w) { for (int i = 0; ((i + w) <= N) && ((i + 1) < N); i++) { f[i][i + w] = (f[i + 1][i + w] * B[i + 1][i]) % mod; } } long[][] g = new long[N + 1][1]; g[0] = new long[]{ 1 }; // g[i] = B の 0,1,..,i-1 行目と 0,1,..,i-1 列目からなる部分行列の特性多項式 for (int i = 0; i < N; i++) { g[i + 1] = PolynomialFp.add(g[i + 1], PolynomialFp.mul(g[i], new long[]{ mod - B[i][i], 1 })); for (int j = i + 1; j < N; j++) { long c = mod - ((f[i][j] * B[i][j]) % mod); g[j + 1] = PolynomialFp.add(g[j + 1], PolynomialFp.mul(g[i], c)); } } return g[N]; } } class FastScanner { private static FastScanner instance = null; private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private FastScanner() { } public static FastScanner getInstance() { if (instance == null) { instance = new FastScanner(); } return instance; } private boolean hasNextByte() { if (ptr < buflen) { return true; } ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } return buflen > 0; } private int readByte() { if (hasNextByte()) { return buffer[ptr++]; } else { return -1; } } private boolean isPrintableChar(int c) { return (33 <= c) && (c <= 126); } public boolean hasNext() { while (hasNextByte() && (!isPrintableChar(buffer[ptr]))) { ptr++; } return hasNextByte(); } public long nextLong() { if (!hasNext()) { throw new NoSuchElementException(); } long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } while ((b >= '0') && (b <= '9')) { // n = n * 10 + (b - '0'); n = ((n << 1) + (n << 3)) + (b - '0'); b = readByte(); } return minus ? -n : n; } public int nextInt() { return ((int) (nextLong())); } public long[][] nextLongs(int H, int W) { long[][] a = new long[H][W]; for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { a[i][j] = nextLong(); } } return a; } } class MergeFiles {} class PolynomialFp { public static final long mod = 998244353;// 119×2^{23}+1 static long[][] bitreversedRoots = new long[30][]; static long[][] bitreversedInvRoots = new long[30][]; static long ADD(long a, long b) { long sum = a + b; return sum >= mod ? sum - mod : sum; } static long SUB(long a, long b) { return ADD(a, mod - b); } static void prepareRoots(int n) { int sz = Integer.numberOfTrailingZeros(n); if (bitreversedRoots[sz] != null) { return; } long g = 3; long root = MathUtils.modPow(g, (mod - 1) / n, mod); long iroot = MathUtils.modInv(root, mod); bitreversedRoots[sz] = new long[n]; bitreversedInvRoots[sz] = new long[n]; for (int n_ = n / 2; n_ >= 1; n_ /= 2 , root = (root * root) % mod , iroot = (iroot * iroot) % mod) { long w = 1; long iw = 1; for (int j = 0; j < n_; ++j) { bitreversedRoots[sz][n_ + j] = w; bitreversedInvRoots[sz][n_ + j] = iw; w = (w * root) % mod; iw = (iw * iroot) % mod; } int cur = 0; for (int j = 0; j < n_; ++j) { if (cur < j) { ArrayUtils.swap(n_ + cur, n_ + j, bitreversedRoots[sz]); ArrayUtils.swap(n_ + cur, n_ + j, bitreversedInvRoots[sz]); } for (int k = n_ / 2; k > (cur ^= k); k /= 2); } } } /** * Scott, Michael. "A note on the implementation of the number theoretic transform." IMA International Conference on Cryptography and Coding. Cham: Springer International Publishing, 2017. * * @param a */ public static void fftTobitReversed(long[] a) { int n = a.length; int sz = Integer.numberOfTrailingZeros(a.length); if (bitreversedRoots[sz] == null) { prepareRoots(a.length); } for (int m = 1, t = n / 2; m <= (n / 2); m *= 2 , t /= 2) { for (int i = 0, k = 0; i < m; ++i , k += 2 * t) { long S = bitreversedRoots[sz][m + i]; for (int j = k; j < (k + t); ++j) { long u = a[j]; long v = (a[j + t] * S) % mod; a[j] = ADD(u, v); a[j + t] = SUB(u, v); } } } } /** * Scott, Michael. "A note on the implementation of the number theoretic transform." IMA International Conference on Cryptography and Coding. Cham: Springer International Publishing, 2017. * * @param a */ public static void ifftFromBitreversed(long[] a) { long invN = MathUtils.modInv(a.length, mod); int n = a.length; int sz = Integer.numberOfTrailingZeros(n); if (bitreversedInvRoots[sz] == null) { prepareRoots(a.length); } for (int m = n / 2, t = 1; m >= 1; m /= 2 , t *= 2) { for (int i = 0, k = 0; i < m; ++i , k += 2 * t) { long S = bitreversedInvRoots[sz][m + i]; if (m == 1) { S = (S * invN) % mod; } for (int j = k; j < (k + t); ++j) { long u = a[j]; long v = a[j + t]; if (m == 1) { a[j] = ((u + v) * invN) % mod; } else { a[j] = ADD(u, v); } a[j + t] = (((u + mod) - v) * S) % mod; } } } } public static long[] add(long[] a, long[] b) { long[] ret = new long[Math.max(a.length, b.length)]; for (int i = 0; i < ret.length; ++i) { ret[i] = ADD(i < a.length ? a[i] : 0, i < b.length ? b[i] : 0); } return ret; } static long[] mulFFT(long[] a, long[] b) { int n = 1; int len = (a.length + b.length) - 1; while (n < ((a.length + b.length) - 1)) { n *= 2; } a = Arrays.copyOf(a, n); b = Arrays.copyOf(b, n); prepareRoots(n); fftTobitReversed(a); fftTobitReversed(b); for (int i = 0; i < a.length; ++i) { a[i] = (a[i] * b[i]) % mod; } ifftFromBitreversed(a); return resize(a, len); } public static long[] mulNaive(long[] a, long[] b) { long[] ret = new long[(a.length + b.length) - 1]; for (int i = 0; i < a.length; ++i) { for (int j = 0; j < b.length; ++j) { ret[i + j] += a[i] * b[j]; ret[i + j] %= mod; } } return ret; } /** * [-mod+1, mod-1]の範囲外の要素があると、ADD/SUBでバグる。 * * @param a * @param b * @return */ public static long[] mul(long[] a, long[] b) { for (int i = 0; i < a.length; i++) { if (a[i] < 0) { a[i] += mod; } } for (int i = 0; i < b.length; i++) { if (b[i] < 0) { b[i] += mod; } } if ((((a.length + b.length) - 1) <= 512) || (Math.min(a.length, b.length) <= 10)) { return mulNaive(a, b); } else { return mulFFT(a, b); } } public static long[] mul(long[] a, long b) { long[] ret = new long[a.length]; for (int i = 0; i < a.length; ++i) { ret[i] = (a[i] * b) % mod; } return ret; } static long[] resize(long[] a, int len) { return Arrays.copyOf(a, len); } } class ArrayUtils { public static void swap(int i, int j, long[] A) { if (i == j) { return; } long tmp = A[i]; A[i] = A[j]; A[j] = tmp; } public static void swap(long[] A, long[] B) { if (A.length != B.length) { throw new AssertionError(); } for (int i = 0; i < A.length; i++) { long tmp = A[i]; A[i] = B[i]; B[i] = tmp; } } public static void swapColumns(int i, int j, long[][] a) { if (i == j) { return; } for (int k = 0; k < a.length; k++) { var tmp = a[k][i]; a[k][i] = a[k][j]; a[k][j] = tmp; } } public static long[][] copy(long[][] a) { long[][] b = new long[a.length][]; Arrays.setAll(b, i -> Arrays.copyOf(a[i], a[i].length)); return b; } public static long[] modMul(long[] a, long scalar, long mod) { long[] b = new long[a.length]; for (int i = 0; i < a.length; ++i) { b[i] = (a[i] * scalar) % mod; } return b; } public static long[] modSub(long[] a, long[] b, long mod) { if (a.length != b.length) { throw new AssertionError(); } long[] c = new long[a.length]; for (int i = 0; i < a.length; ++i) { c[i] = a[i] - b[i]; if (c[i] < 0) { c[i] += mod; } } return c; } } class MyPrintWriter extends PrintWriter { private static MyPrintWriter instance = null; private MyPrintWriter() { super(System.out); } public static MyPrintWriter getInstance() { if (instance == null) { instance = new MyPrintWriter(); } return instance; } public void println(long[] a, String separator) { for (int i = 0; i < a.length; ++i) { super.print(a[i] + (i == (a.length - 1) ? "\n" : separator)); } } } class MathUtils { public static long modPow(long a, long n, long mod) { if (n < 0) { long inv = MathUtils.modInv(a, mod); return MathUtils.modPow(inv, -n, mod); } if (n == 0) { return 1; } return (MathUtils.modPow((a * a) % mod, n / 2, mod) * ((n % 2) == 1 ? a : 1)) % mod; } /** * 拡張ユークリッドの互除法で逆元を求める。 * * @param a * @param mod * @return */ public static long modInv(long a, long mod) { a = ((a % mod) + mod) % mod; long[] f0 = new long[]{ 1, 0, mod }; long[] f1 = new long[]{ 0, 1, a }; while (f1[2] != 0) { long q = f0[2] / f1[2]; for (int i = 0; i < 3; i++) { f0[i] -= q * f1[i]; } ArrayUtils.swap(f0, f1); } return f0[1] < 0 ? mod + f0[1] : f0[1]; } } public class Main implements Runnable { public static void main(String[] args) throws IOException { Thread.setDefaultUncaughtExceptionHandler((t, e) -> System.exit(1)); // new Main().gen(); // Runtime runtime = Runtime.getRuntime(); // new Thread(null, new Main(), "MainThreadWithLargeStack", (1024 * 1024) * 1024).run(); // new Main().test(); // new Main().gen(); new Main().run(); // new Main().solve(); // long usedMemory = runtime.totalMemory() - runtime.freeMemory(); // System.err.printf("使用メモリ: %.2f MB%n", usedMemory / 1024.0 / 1024.0); MyPrintWriter.getInstance().flush(); } final long mod = 998244353; @Override public void run() { FastScanner sc = FastScanner.getInstance(); MyPrintWriter pw = MyPrintWriter.getInstance(); int N = sc.nextInt(); long[][] A = sc.nextLongs(N, N); long[][] B = sc.nextLongs(N, N); long[] ans = f(B, A); ans = Arrays.copyOf(ans, N + 1); pw.println(ans, "\n"); } /** * det(Ax+B) * * @param A * @param B * @return */ long[] f(long[][] A, long[][] B) { int N = A.length; long[][] C = new long[N][2 * N]; for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { C[i][j] = A[i][j]; C[i][j + N] = B[i][j]; } } long d = 1; int offset = 0; for (int i = 0; i < N; ++i) { if (offset == (N + 1)) { // 特性多項式の次数は高々N。N+1次の特性多項式は存在しないので0を返す。 return new long[]{ 0 }; } { int j = i; while ((j < C.length) && (C[j][i] == 0)) { ++j; } if (j == C.length) { for (int k = 0; k < i; k++) { if (C[k][i] == 0) { continue; } long c = mod - C[k][i]; for (int l = 0; l < N; l++) { C[l][i] = (C[l][i] + (c * C[l][k])) % mod; C[l][i + N] = (C[l][i + N] + (c * C[l][k + N])) % mod; } } ArrayUtils.swapColumns(i, i + N, C); offset++; i--; continue; } if (i != j) { d = mod - d; ArrayUtils.swap(C[i], C[j]); } } d = (d * C[i][i]) % mod; long invCii = MathUtils.modInv(C[i][i], mod); for (int j = 0; j < C[i].length; ++j) { C[i][j] = (C[i][j] * invCii) % mod; } for (int j = 0; j < C.length; ++j) { if (i == j) { continue; } C[j] = ArrayUtils.modSub(C[j], ArrayUtils.modMul(C[i], C[j][i], mod), mod); } } for (int i = 0; i < N; i++) { C[i] = Arrays.copyOfRange(C[i], N, 2 * N); } for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (C[i][j] != 0) { C[i][j] = mod - C[i][j]; } } } long[] ret = Matrix.characteristicPolynomialOnFp(C, mod); for (int i = 0; i < ret.length; i++) { ret[i] = (d * ret[i]) % mod; } return Arrays.copyOfRange(ret, offset, ret.length); } }