#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _MSC_VER #include #endif #include #include namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < // 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template constexpr int primitive_root = primitive_root_constexpr(m); // @param n `n < 2^32` // @param m `1 <= m < 2^32` // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64) unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; // y_max < m * (n + 1) // floor(y_max / m) <= n n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal namespace internal { #ifndef _MSC_VER template using is_signed_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_unsigned_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using make_unsigned_int128 = typename std::conditional::value, __uint128_t, unsigned __int128>; template using is_integral = typename std::conditional::value || is_signed_int128::value || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using is_signed_int = typename std::conditional<(is_integral::value && std::is_signed::value) || is_signed_int128::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional<(is_integral::value && std::is_unsigned::value) || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional< is_signed_int128::value, make_unsigned_int128, typename std::conditional::value, std::make_unsigned, std::common_type>::type>::type; #else template using is_integral = typename std::is_integral; template using is_signed_int = typename std::conditional::value && std::is_signed::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional::value && std::is_unsigned::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional::value, std::make_unsigned, std::common_type>::type; #endif template using is_signed_int_t = std::enable_if_t::value>; template using is_unsigned_int_t = std::enable_if_t::value>; template using to_unsigned_t = typename to_unsigned::type; } // namespace internal namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template using is_modint = std::is_base_of; template using is_modint_t = std::enable_if_t::value>; } // namespace internal template * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template * = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime; }; template struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template * = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template internal::barrett dynamic_modint::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template using is_static_modint = std::is_base_of; template using is_static_modint_t = std::enable_if_t::value>; template struct is_dynamic_modint : public std::false_type {}; template struct is_dynamic_modint> : public std::true_type {}; template using is_dynamic_modint_t = std::enable_if_t::value>; } // namespace internal // using mint = modint998244353; /* g++ -std=c++23 -O2 -Wall -Wextra A.cpp -o A ./A < input.in > output.out */ namespace internal { template struct csr { std::vector start; std::vector elist; explicit csr(int n, const std::vector>& edges) : start(n + 1), elist(edges.size()) { for (auto e : edges) { start[e.first + 1]++; } for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; } auto counter = start; for (auto e : edges) { elist[counter[e.first]++] = e.second; } } }; } // namespace internal struct scc_graph { public: explicit scc_graph(int n) : _n(n) {} int num_vertices() { return _n; } void add_edge(int from, int to) { edges.push_back({from, {to}}); } // @return pair of (# of scc, scc id) std::pair> scc_ids() { auto g = internal::csr(_n, edges); int now_ord = 0, group_num = 0; std::vector visited, low(_n), ord(_n, -1), ids(_n); visited.reserve(_n); auto dfs = [&](auto self, int v) -> void { low[v] = ord[v] = now_ord++; visited.push_back(v); for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto to = g.elist[i].to; if (ord[to] == -1) { self(self, to); low[v] = std::min(low[v], low[to]); } else { low[v] = std::min(low[v], ord[to]); } } if (low[v] == ord[v]) { while (true) { int u = visited.back(); visited.pop_back(); ord[u] = _n; ids[u] = group_num; if (u == v) break; } group_num++; } }; for (int i = 0; i < _n; i++) { if (ord[i] == -1) dfs(dfs, i); } for (auto& x : ids) { x = group_num - 1 - x; } return {group_num, ids}; } std::vector> scc() { auto ids = scc_ids(); int group_num = ids.first; std::vector counts(group_num); for (auto x : ids.second) counts[x]++; std::vector> groups(ids.first); for (int i = 0; i < group_num; i++) { groups[i].reserve(counts[i]); } for (int i = 0; i < _n; i++) { groups[ids.second[i]].push_back(i); } return groups; } private: int _n; struct edge { int to; }; std::vector> edges; }; class Solution { public: int minRunesToAdd(int n, std::vector& crystals, std::vector& from, std::vector& to) { scc_graph g(n); for (size_t i = 0; i < from.size(); i++) { g.add_edge(from[i], to[i]); } auto [scc_num, scc_id] = g.scc_ids(); std::vector> dag(scc_num); std::vector> tmp(scc_num); for (size_t i = 0; i < from.size(); i++) { int u = from[i], v = to[i]; int cu = scc_id[u], cv = scc_id[v]; if (cu == cv) continue; tmp[cu].push_back(cv); } for (int c = 0; c < scc_num; c++) { auto& t = tmp[c]; std::sort(t.begin(), t.end()); t.erase(std::unique(t.begin(), t.end()), t.end()); dag[c] = std::move(t); } std::queue q; std::vector reachable(scc_num, false); for (int node : crystals) { int c = scc_id[node]; if (!reachable[c]) { reachable[c] = true; q.push(c); } } while (!q.empty()) { int u = q.front(); q.pop(); for (int v : dag[u]) { if (!reachable[v]) { reachable[v] = 1; q.push(v); } } } int ans = 0; for (int c = 0; c < scc_num; c++) { if (!reachable[c]) ans++; } return ans; } }; // wavelet matrix topK sum 付き // Wavelet matrix + range topK sum (small) // https://kopricky.github.io/code/DataStructure_Advanced/wavelet_matrix.html #include #include struct BitRank { // block: bit 列を管理, count: block ごとに立っている 1 の数を管理 std::vector block; std::vector count; BitRank() {} void resize(const unsigned int num) { block.resize(((num + 1) >> 6) + 1, 0); count.resize(block.size(), 0); } // i ビット目を val(0,1) にセット void set(const unsigned int i, const unsigned long long val) { block[i >> 6] |= (val << (i & 63)); } void build() { for (unsigned int i = 1; i < block.size(); i++) { count[i] = count[i - 1] + __builtin_popcountll(block[i - 1]); } } // [0, i) ビットの 1 の数 unsigned int rank1(const unsigned int i) const { return count[i >> 6] + __builtin_popcountll(block[i >> 6] & ((1ULL << (i & 63)) - 1ULL)); } // [i, j) ビットの 1 の数 unsigned int rank1(const unsigned int i, const unsigned int j) const { return rank1(j) - rank1(i); } // [0, i) ビットの 0 の数 unsigned int rank0(const unsigned int i) const { return i - rank1(i); } // [i, j) ビットの 0 の数 unsigned int rank0(const unsigned int i, const unsigned int j) const { return rank0(j) - rank0(i); } }; class WaveletMatrix { private: unsigned int height; std::vector B; std::vector pos; std::vector> rui; public: WaveletMatrix() {} WaveletMatrix(std::vector vec) : WaveletMatrix(vec, *std::max_element(vec.begin(), vec.end()) + 1) {} // sigma:文字の種類数 WaveletMatrix(std::vector vec, const unsigned int sigma) { init(vec, sigma); } void init(std::vector& vec, const unsigned int sigma) { height = (sigma == 1) ? 1 : (64 - __builtin_clzll(sigma - 1)); B.resize(height), pos.resize(height); std::vector A = vec; rui.resize(height + 1); for (unsigned int i = 0; i < height; ++i) { B[i].resize(vec.size()); for (unsigned int j = 0; j < vec.size(); ++j) { B[i].set(j, get(vec[j], height - i - 1)); } B[i].build(); auto it = stable_partition(vec.begin(), vec.end(), [&](int c) { return !get(c, height - i - 1); }); pos[i] = it - vec.begin(); } for (unsigned int i = 0; i <= height; ++i) { rui[i].resize(A.size() + 1); for (int j = 1; j <= A.size(); j++) { rui[i][j] = rui[i][j - 1] + A[j - 1]; } if (i == height) break; std::stable_partition(A.begin(), A.end(), [&](int c) { return !get(c, height - i - 1); }); } } // val の i ビット目の値を返す(0,1) int get(const int val, const int i) { return val >> i & 1; } // [l, r) の間に現れる値 val の数 int rank(const int val, const int l, const int r) { return rank(val, r) - rank(val, l); } // [0, i) の間に現れる値 val の数 int rank(int val, int i) { int p = 0; for (unsigned int j = 0; j < height; ++j) { if (get(val, height - j - 1)) { p = pos[j] + B[j].rank1(p); i = pos[j] + B[j].rank1(i); } else { p = B[j].rank0(p); i = B[j].rank0(i); } } return i - p; } // [l, r) の k(0,1,2...) 番目に小さい値を返す int quantile(int k, int l, int r) { int res = 0; for (unsigned int i = 0; i < height; ++i) { const int j = B[i].rank0(l, r); if (j > k) { l = B[i].rank0(l); r = B[i].rank0(r); } else { l = pos[i] + B[i].rank1(l); r = pos[i] + B[i].rank1(r); k -= j; res |= (1 << (height - i - 1)); } } return res; } long long topKsum(int k, int l, int r) { if (l == r) return 0LL; long long res = 0; int atai = 0; for (unsigned int i = 0; i < height; ++i) { const int j = B[i].rank0(l, r); if (j > k) { l = B[i].rank0(l); r = B[i].rank0(r); } else { int l2 = B[i].rank0(l); int r2 = B[i].rank0(r); res += rui[i + 1][r2] - rui[i + 1][l2]; l = pos[i] + B[i].rank1(l); r = pos[i] + B[i].rank1(r); k -= j; atai |= (1 << (height - i - 1)); } } res += (long long)atai * k; return res; } int rangefreq(const int i, const int j, const int a, const int b, const int l, const int r, const int x) { if (i == j || r <= a || b <= l) return 0; const int mid = (l + r) >> 1; if (a <= l && r <= b) { return j - i; } else { const int left = rangefreq(B[x].rank0(i), B[x].rank0(j), a, b, l, mid, x + 1); const int right = rangefreq(pos[x] + B[x].rank1(i), pos[x] + B[x].rank1(j), a, b, mid, r, x + 1); return left + right; } } // [l,r) で値が [a,b) 内に含まれる数を返す int rangefreq(const int l, const int r, const int a, const int b) { return rangefreq(l, r, a, b, 0, 1 << height, 0); } int rangemin(const int i, const int j, const int a, const int b, const int l, const int r, const int x, const int val) { if (i == j || r <= a || b <= l) return -1; if (r - l == 1) return val; const int mid = (l + r) >> 1; const int res = rangemin(B[x].rank0(i), B[x].rank0(j), a, b, l, mid, x + 1, val); if (res < 0) return rangemin(pos[x] + B[x].rank1(i), pos[x] + B[x].rank1(j), a, b, mid, r, x + 1, val + (1 << (height - x - 1))); else return res; } // [l,r) で値が [a,b) 内に最小の数を返す(数が存在しない場合は -1 を返す) int rangemin(int l, int r, int a, int b) { return rangemin(l, r, a, b, 0, 1 << height, 0, 0); } }; template class OrthogonalRangeCount { private: using ptt = std::pair; const int sz; std::vector X, Y; WaveletMatrix wm; public: OrthogonalRangeCount(std::vector candidate) : sz((int)candidate.size()), X(sz), Y(sz) { sort(candidate.begin(), candidate.end()); std::vector vec(sz); for (int i = 0; i < sz; ++i) { X[i] = candidate[i].first, Y[i] = candidate[i].second; } sort(Y.begin(), Y.end()); Y.erase(unique(Y.begin(), Y.end()), Y.end()); for (int i = 0; i < sz; ++i) { vec[i] = lower_bound(Y.begin(), Y.end(), candidate[i].second) - Y.begin(); } wm.init(vec, Y.size()); } // [lx,rx) × [ly, ry) の長方形領域に含まれる点の数を答える int query(const T lx, const T ly, const T rx, const T ry) { const int lxid = lower_bound(X.begin(), X.end(), lx) - X.begin(); const int rxid = lower_bound(X.begin(), X.end(), rx) - X.begin(); const int lyid = lower_bound(Y.begin(), Y.end(), ly) - Y.begin(); const int ryid = lower_bound(Y.begin(), Y.end(), ry) - Y.begin(); if (lxid >= rxid || lyid >= ryid) return 0; return wm.rangefreq(lxid, rxid, lyid, ryid); } }; int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); int n; std::cin >> n; std::vector a(n); for (int i = 0; i < n; ++i) { std::cin >> a[i]; } long long gcd = a[0]; for (int i = 1; i < n; ++i) { gcd = std::gcd(gcd, a[i]); } for (int i = 0; i < n; ++i) { long long x = a[i]; x /= gcd; std::cout << x << ":\n"[i == n - 1]; } return 0; }