#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vvvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vvvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline int getb(T set, int i) { return (set >> i) & T(1); } template inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint998244353; //using mint = static_modint<(int)1e9+7>; //using mint = static_modint<1073741827>; // CRT 用 //using mint = static_modint<1073741831>; // CRT 用 //using mint = modint; // mint::set_mod(m); using vm = vector; using vvm = vector; using vvvm = vector; using vvvvm = vector; using pim = pair; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) int mute_dump = 0; int frac_print = 0; #if __has_include() namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } #endif inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_math(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); rep(i,9)cout< struct Matrix { int n, m; // 行列のサイズ(n 行 m 列) vector> v; // 行列の成分 // n×m 零行列で初期化する. Matrix(int n, int m) : n(n), m(m), v(n, vector(m)) {} // n×n 単位行列で初期化する. Matrix(int n) : n(n), m(n), v(n, vector(n)) { rep(i, n) v[i][i] = T(1); } // 二次元配列 a[0..n)[0..m) の要素で初期化する. Matrix(const vector>& a) : n(sz(a)), m(sz(a[0])), v(a) {} Matrix() : n(0), m(0) {} // 代入 Matrix(const Matrix&) = default; Matrix& operator=(const Matrix&) = default; // アクセス inline vector const& operator[](int i) const { return v[i]; } inline vector& operator[](int i) { return v[i]; } // 入力 friend istream& operator>>(istream& is, Matrix& a) { rep(i, a.n) rep(j, a.m) is >> a.v[i][j]; return is; } // 行の追加 void push_back(const vector& a) { Assert(sz(a) == m); v.push_back(a); n++; } // 行の削除 void pop_back() { Assert(n > 0); v.pop_back(); n--; } // サイズ変更 void resize(int n_) { v.resize(n_); n = n_; } void resize(int n_, int m_) { n = n_; m = m_; v.resize(n); rep(i, n) v[i].resize(m); } // 空か bool empty() const { return min(n, m) == 0; } // 比較 bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; } bool operator!=(const Matrix& b) const { return !(*this == b); } // 加算,減算,スカラー倍 Matrix& operator+=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] += b[i][j]; return *this; } Matrix& operator-=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] -= b[i][j]; return *this; } Matrix& operator*=(const T& c) { rep(i, n) rep(j, m) v[i][j] *= c; return *this; } Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; } Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; } Matrix operator*(const T& c) const { return Matrix(*this) *= c; } friend Matrix operator*(const T& c, const Matrix& a) { return a * c; } Matrix operator-() const { return Matrix(*this) *= T(-1); } // 行列ベクトル積 : O(m n) vector operator*(const vector& x) const { vector y(n); rep(i, n) rep(j, m) y[i] += v[i][j] * x[j]; return y; } // ベクトル行列積 : O(m n) friend vector operator*(const vector& x, const Matrix& a) { vector y(a.m); rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j]; return y; } // 積:O(n^3) Matrix operator*(const Matrix& b) const { Matrix res(n, b.m); rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j]; return res; } Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; } // 累乗:O(n^3 log d) Matrix pow(ll d) const { Matrix res(n), pow2 = *this; while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d >>= 1; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Matrix& a) { rep(i, a.n) { os << "["; rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1]; if (i < a.n - 1) os << "\n"; } return os; } #endif }; //【行簡約形(行交換なし)】O(n m min(n, m)) template vector row_reduced_form(Matrix& A) { int n = A.n, m = A.m; vector piv; piv.reserve(min(n, m)); // 未確定の列を記録しておくリスト list rjs; rep(j, m) rjs.push_back(j); rep(i, n) { // 第 i 行の係数を左から走査し非 0 を見つける. auto it = rjs.begin(); for (; it != rjs.end(); it++) if (A[i][*it] != 0) break; // 第 i 行の全てが 0 なら無視する. if (it == rjs.end()) continue; // A[i][j] をピボットに選択する. int j = *it; rjs.erase(it); piv.emplace_back(i, j); // A[i][j] が 1 になるよう行全体を A[i][j] で割る. T Aij_inv = T(1) / A[i][j]; repi(j2, j, m - 1) A[i][j2] *= Aij_inv; // 第 i 行以外の第 j 列の成分が全て 0 になるよう第 i 行を定数倍して減じる. rep(i2, n) if (A[i2][j] != 0 && i2 != i) { T mul = A[i2][j]; repi(j2, j, m - 1) A[i2][j2] -= A[i][j2] * mul; } } return piv; } //【逆行列】O(n^3) template Matrix inverse_matrix(const Matrix& mat) { int n = mat.n; // 元の行列 mat と単位行列を繋げた拡大行列 v を作る. vector> v(n, vector(2 * n)); rep(i, n) rep(j, n) { v[i][j] = mat[i][j]; if (i == j) v[i][n + j] = 1; } int m = 2 * n; // 注目位置を (i, j)(i 行目かつ j 列目)とする. int i = 0, j = 0; // 拡大行列に対して行基本変形を行い,左側を単位行列にすることを目指す. while (i < n && j < m) { // 同じ列の下方の行から非 0 成分を見つける. int i2 = i; while (i2 < n && v[i2][j] == T(0)) i2++; // 見つからなかったら全て 0 の列があったので mat は非正則 if (i2 == n) return Matrix(); // 見つかったら i 行目とその行を入れ替える. if (i != i2) swap(v[i], v[i2]); // v[i][j] が 1 になるよう行全体を v[i][j] で割る. T vij_inv = T(1) / v[i][j]; repi(j2, j, m - 1) v[i][j2] *= vij_inv; // v[i][j] と同じ列の成分が全て 0 になるよう i 行目を定数倍して減じる. rep(i2, n) { // i 行目だけは引かない. if (i2 == i) continue; T mul = v[i2][j]; repi(j2, j, m - 1) v[i2][j2] -= v[i][j2] * mul; } // 注目位置を右下に移す. i++; j++; } // 拡大行列の右半分が mat の逆行列なのでコピーする. Matrix mat_inv(n, n); rep(i, n) rep(j, n) mat_inv[i][j] = v[i][n + j]; return mat_inv; } // 遷移行列の係数を計算し,埋め込み用のコードを出力する. // 失敗したら len_min を指定する.待てない場合は len_max とか LB_max とかを指定する. pair>, vm> embed_coefs(int COL, int len_min = 0, int len_max = INF, int LB_max = INF) { vector ss{""}; int idx = 0; int PDIM = -1; repi(len, 0, INF) { dump("----------- len:", len, "--------------"); int L = sz(ss); int LB = min(L, LB_max); dump("L:", L); // (i,j) 成分が naive(ss[i] + ss[j]) であるような行列 mat を得る. Matrix mat(L, LB); rep(i, L) rep(j, LB) mat[i][j] = naive(ss[i] + ss[j]); //dump("mat:"); dump(mat); // mat に対して行基本変形を行いピボット位置のリスト piv を得る. auto piv = row_reduced_form(mat); int DIM = sz(piv); #ifdef _MSC_VER vi is, js; for (auto [i, j] : piv) is.push_back(i), js.push_back(j); sort(all(is)); sort(all(js)); cerr << "DIM = " << DIM << endl; cerr << "ss[is]: "; repe(i, is) cerr << ss[i] << " "; cerr << endl; cerr << "ss[js]: "; repe(j, js) cerr << ss[j] << " "; cerr << endl; #endif // rank の更新がなかったら必要な情報は揃ったとみなして打ち切る(たまに失敗する) if (len == len_max || (len >= len_min && DIM == PDIM)) { int DIM = sz(piv); // 選択した行と列をそれぞれ昇順に並べて is, js とする(0 始まりのはず) vi is(DIM), js(DIM); rep(r, DIM) tie(is[r], js[r]) = piv[r]; sort(all(js)); // is : 本質的に区別しなければならない文字列のリスト // js : is を区別するのに必要最低限の接ぎ文字列のリスト // 基底の変換行列 P を得る. Matrix matP(DIM, DIM); rep(i, DIM) rep(j, DIM) matP[i][j] = naive(ss[is[i]] + ss[js[j]]); // P の逆行列 P_inv を得る. auto matP_inv = inverse_matrix(matP); // 各文字に対応する表現行列を得る. vector> matAs(COL, Matrix(DIM, DIM)); rep(c, COL) { char ch = '0' + c; rep(i, DIM) rep(j, DIM) matAs[c][i][j] = naive(ss[is[i]] + ch + ss[js[j]]); matAs[c] = matAs[c] * matP_inv; } // 右端を閉じるためのベクトルを得る. vm vecP(DIM); rep(i, DIM) vecP[i] = matP[i][0]; // 埋め込み用の文字列を出力する. //auto to_signed_string = [](mint x) { // int v = x.val(); // int mod = mint::mod(); // if (v > mod / 2) v -= mod; // return to_string(v); //}; //string eb; //eb += "constexpr int DIM = "; //eb += to_string(DIM); //eb += ";\n"; //eb += "constexpr int COL = "; //eb += to_string(COL); //eb += ";\n"; //eb += "VTYPE matAs[COL][DIM][DIM] = {\n"; //rep(c, COL) { // eb += "{"; // rep(i, DIM) { // eb += "{"; // rep(j, DIM) eb += to_signed_string(matAs[c][i][j]) + ","; // eb.pop_back(); // eb += "},"; // } // eb.pop_back(); // eb += "},\n"; //} //eb.pop_back(); //eb.pop_back(); //eb += "};\n"; //eb += "VTYPE vecP[DIM] = {"; //rep(i, DIM) eb += to_signed_string(vecP[i]) + ","; //eb.pop_back(); //eb += "};\n"; //cout << eb; //exit(0); return { matAs, vecP }; } // 基底ガチャ //mt19937_64 mt((int)time(NULL)); shuffle(ss.begin() + idx, ss.end(), mt); // 次に長い文字列たちを ss に追加する. int nidx = sz(ss); repi(i, idx, nidx - 1) rep(c, COL) { ss.push_back(ss[i]); ss.back().push_back('0' + c); } idx = nidx; PDIM = DIM; } return pair>, vm>(); } //【形式的冪級数】 /* * MFPS() : O(1) * 零多項式 f = 0 で初期化する. * * MFPS(mint c0) : O(1) * 定数多項式 f = c0 で初期化する. * * MFPS(mint c0, int n) : O(n) * n 次未満の項をもつ定数多項式 f = c0 で初期化する. * * MFPS(vm c) : O(n) * f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1) で初期化する. * * set_conv(vm(*CONV)(const vm&, const vm&)) : O(1) * 畳込み用の関数を CONV に設定する. * * c + f, f + c : O(1) f + g : O(n) * f - c : O(1) c - f, f - g, -f : O(n) * c * f, f * c : O(n) f * g : O(n log n) f * g_sp : O(n |g|) * f / c : O(n) f / g : O(n log n) f / g_sp : O(n |g|) * 形式的冪級数としての和,差,積,商の結果を返す. * g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す. * 制約 : 商では g(0) != 0 * * MFPS f.inv(int d) : O(n log n) * 1 / f mod z^d を返す. * 制約 : f(0) != 0 * * MFPS f.quotient(MFPS g) : O(n log n) * MFPS f.reminder(MFPS g) : O(n log n) * pair f.quotient_remainder(MFPS g) : O(n log n) * 多項式としての f を g で割った商,余り,商と余りの組を返す. * 制約 : g の最高次の係数は 0 でない * * int f.deg(), int f.size() : O(1) * 多項式 f の次数[項数]を返す. * * MFPS::monomial(int d, mint c = 1) : O(d) * 単項式 c z^d を返す. * * mint f.assign(mint c) : O(n) * 多項式 f の不定元 z に c を代入した値を返す. * * f.resize(int d) : O(1) * mod z^d をとる. * * f.resize() : O(n) * 不要な高次の項を削る. * * f >> d, f << d : O(n) * 係数列を d だけ右[左]シフトした多項式を返す. * (右シフトは z^d の乗算,左シフトは z^d で割った商と等価) * * f.push_back(c) : O(1) * 最高次の係数として c を追加する. */ struct MFPS { using SMFPS = vector; int n; // 係数の個数(次数 + 1) vm c; // 係数列 inline static vm(*CONV)(const vm&, const vm&) = convolution; // 畳込み用の関数 // コンストラクタ(0,定数,係数列で初期化) MFPS() : n(0) {} MFPS(mint c0) : n(1), c({ c0 }) {} MFPS(int c0) : n(1), c({ mint(c0) }) {} MFPS(mint c0, int d) : n(d), c(n) { if (n > 0) c[0] = c0; } MFPS(int c0, int d) : n(d), c(n) { if (n > 0) c[0] = c0; } MFPS(const vm& c_) : n(sz(c_)), c(c_) {} MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; } // 代入 MFPS(const MFPS& f) = default; MFPS& operator=(const MFPS& f) = default; MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; } void push_back(mint cn) { c.emplace_back(cn); ++n; } void pop_back() { c.pop_back(); --n; } [[nodiscard]] mint back() { return c.back(); } // 比較 [[nodiscard]] bool operator==(const MFPS& g) const { return c == g.c; } [[nodiscard]] bool operator!=(const MFPS& g) const { return c != g.c; } // アクセス inline mint const& operator[](int i) const { return c[i]; } inline mint& operator[](int i) { return c[i]; } // 次数 [[nodiscard]] int deg() const { return n - 1; } [[nodiscard]] int size() const { return n; } static void set_conv(vm(*CONV_)(const vm&, const vm&)) { // verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci CONV = CONV_; } // 加算 MFPS& operator+=(const MFPS& g) { if (n >= g.n) rep(i, g.n) c[i] += g.c[i]; else { rep(i, n) c[i] += g.c[i]; repi(i, n, g.n - 1) c.push_back(g.c[i]); n = g.n; } return *this; } [[nodiscard]] MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; } // 定数加算 MFPS& operator+=(const mint& sc) { if (n == 0) { n = 1; c = { sc }; } else { c[0] += sc; } return *this; } [[nodiscard]] MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; } [[nodiscard]] friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; } MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; } [[nodiscard]] MFPS operator+(const int& sc) const { return MFPS(*this) += sc; } [[nodiscard]] friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; } // 減算 MFPS& operator-=(const MFPS& g) { if (n >= g.n) rep(i, g.n) c[i] -= g.c[i]; else { rep(i, n) c[i] -= g.c[i]; repi(i, n, g.n - 1) c.push_back(-g.c[i]); n = g.n; } return *this; } [[nodiscard]] MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; } // 定数減算 MFPS& operator-=(const mint& sc) { *this += -sc; return *this; } [[nodiscard]] MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; } [[nodiscard]] friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); } MFPS& operator-=(const int& sc) { *this += -sc; return *this; } [[nodiscard]] MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; } [[nodiscard]] friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); } // 加法逆元 [[nodiscard]] MFPS operator-() const { return MFPS(*this) *= -1; } // 定数倍 MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; } [[nodiscard]] MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; } [[nodiscard]] friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; } MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; } [[nodiscard]] MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; } [[nodiscard]] friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; } // 右からの定数除算 MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; } [[nodiscard]] MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; } MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; } [[nodiscard]] MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; } // 積 MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; } [[nodiscard]] MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; } // 除算 [[nodiscard]] MFPS inv(int d) const { // 参考:https://nyaannyaan.github.io/library/fps/formal-power-series.hpp // verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series //【方法】 // 1 / f mod z^d を求めることは, // f g = 1 (mod z^d) // なる g を求めることである. // この d の部分を 1, 2, 4, ..., 2^i と倍々にして求めていく. // // d = 1 のときについては // g = 1 / f[0] (mod z^1) // である. // // 次に, // g = h (mod z^k) // が求まっているとして // g mod z^(2 k) // を求める.最初の式を変形していくことで // g - h = 0 (mod z^k) // ⇒ (g - h)^2 = 0 (mod z^(2 k)) // ⇔ g^2 - 2 g h + h^2 = 0 (mod z^(2 k)) // ⇒ f g^2 - 2 f g h + f h^2 = 0 (mod z^(2 k)) // ⇔ g - 2 h + f h^2 = 0 (mod z^(2 k))  (f g = 1 (mod z^d) より) // ⇔ g = (2 - f h) h (mod z^(2 k)) // を得る. // // この手順を d ≦ 2^i となる i まで繰り返し,d 次以上の項を削除すればよい. Assert(!c.empty()); Assert(c[0] != 0); MFPS g(c[0].inv()); for (int k = 1; k < d; k <<= 1) { int len = max(min(2 * k, d), 1); MFPS tmp(0, len); rep(i, min(len, n)) tmp[i] = -c[i]; // -f tmp *= g; // -f h tmp.resize(len); tmp[0] += 2; // 2 - f h g *= tmp; // (2 - f h) h g.resize(len); } return g; } MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); } [[nodiscard]] MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; } // 余り付き除算 [[nodiscard]] MFPS quotient(const MFPS& g) const { // 参考 : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp // verify : https://judge.yosupo.jp/problem/division_of_polynomials //【方法】 // f(x) = g(x) q(x) + r(x) となる q(x) を求める. // f の次数は n-1, g の次数は m-1 とする.(n ≧ m) // 従って q の次数は n-m,r の次数は m-2 となる. // // f^R で f の係数列を逆順にした多項式を表す.すなわち // f^R(x) := f(1/x) x^(n-1) // である.他の多項式も同様とする. // // 最初の式で x → 1/x と置き換えると, // f(1/x) = g(1/x) q(1/x) + r(1/x) // ⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1) // ⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1) // ⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1) // ⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1)) // ⇒ q^R(x) = f^R(x) / g^R(x) (mod x^(n-m+1)) // を得る. // // これで q を mod x^(n-m+1) で正しく求めることができることになるが, // q の次数は n-m であったから,q 自身を正しく求めることができた. if (n < g.n) return MFPS(); return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev(); } [[nodiscard]] MFPS reminder(const MFPS& g) const { // verify : https://judge.yosupo.jp/problem/division_of_polynomials return (*this - this->quotient(g) * g).resize(); } [[nodiscard]] pair quotient_remainder(const MFPS& g) const { // verify : https://judge.yosupo.jp/problem/division_of_polynomials pair res; res.first = this->quotient(g); res.second = (*this - res.first * g).resize(); return res; } // スパース積 MFPS& operator*=(const SMFPS& g) { // g の定数項だけ例外処理 auto it0 = g.begin(); mint g0 = 0; if (it0->first == 0) { g0 = it0->second; it0++; } // 後ろからインライン配る DP repir(i, n - 1, 0) { // 上位項に係数倍して配っていく. for (auto it = it0; it != g.end(); it++) { auto [j, gj] = *it; if (i + j >= n) break; c[i + j] += c[i] * gj; } // 定数項は最後に配るか消去しないといけない. c[i] *= g0; } return *this; } [[nodiscard]] MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; } // スパース商 MFPS& operator/=(const SMFPS& g) { // g の定数項だけ例外処理 auto it0 = g.begin(); Assert(it0->first == 0 && it0->second != 0); mint g0_inv = it0->second.inv(); it0++; // 前からインライン配る DP(後ろに累積効果あり) rep(i, n) { // 定数項は最初に配らないといけない. c[i] *= g0_inv; // 上位項に係数倍して配っていく. for (auto it = it0; it != g.end(); it++) { auto [j, gj] = *it; if (i + j >= n) break; c[i + j] -= c[i] * gj; } } return *this; } [[nodiscard]] MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; } // 係数反転 [[nodiscard]] MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; } // 単項式 [[nodiscard]] static MFPS monomial(int d, mint coef = 1) { MFPS mono(0, d + 1); mono[d] = coef; return mono; } // 不要な高次項の除去 MFPS& resize() { // 最高次の係数が非 0 になるまで削る. while (n > 0 && c[n - 1] == 0) { c.pop_back(); n--; } return *this; } // x^d 以上の項を除去する. MFPS& resize(int d) { n = d; c.resize(d); return *this; } // 不定元への代入 [[nodiscard]] mint assign(const mint& x) const { mint val = 0; repir(i, n - 1, 0) val = val * x + c[i]; return val; } // 係数のシフト MFPS& operator>>=(int d) { n += d; c.insert(c.begin(), d, 0); return *this; } MFPS& operator<<=(int d) { n -= d; if (n <= 0) { c.clear(); n = 0; } else c.erase(c.begin(), c.begin() + d); return *this; } [[nodiscard]] MFPS operator>>(int d) const { return MFPS(*this) >>= d; } [[nodiscard]] MFPS operator<<(int d) const { return MFPS(*this) <<= d; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const MFPS& f) { if (f.n == 0) os << 0; else { rep(i, f.n) { os << f[i] << "z^" << i; if (i < f.n - 1) os << " + "; } } return os; } #endif }; //【拡縮】O(n log n) /* * 与えられた f(z) に対し,f(a z) を返す. */ MFPS scaling(MFPS f, mint a) { //【方法】 // f(z) = Σi=[0..n) f[i] z^i // と表されるとすると, // f(az) = Σi=[0..n) f[i] (az)^i // = Σi=[0..n) a^i f[i] z^i // である.よって a の累積積を計算しながらそれを係数に乗じていけば良い. int n = sz(f); mint a_pow = 1; rep(i, n) { f[i] *= a_pow; a_pow *= a; } return f; } //【一次式の積の展開(等比数列)】O(n log n) /* * Πi∈[0..n) (z + a r^i) を返す. * * 利用:【拡縮】 */ MFPS expand_geometric(int n, mint a, mint r) { //【方法】 // 代わりに // Πi∈[0..n) (1 + a r^i z) // を計算して係数を反転すれば良い. // // f(z) = (1 + a z)(1 + a r z) // が計算できているとすると, // f(r^2 z) = (1 + a r^2 z)(1 + a r^3 z) // なので, // f(z) f(r^2 z) = (1 + a z)(1 + a r z)(1 + a r^2 z)(1 + a r^3 z) // が得られる.このようにダブリングを用いて計算していく. MFPS f(vm({ 1, a })), res(1); mint R = r; while (n > 0) { if (n & 1) res = scaling(res, R) * f; f = scaling(f, R) * f; R *= R; n /= 2; } return res.rev(); } //【多点評価(等比数列)】O((m + n) log(m + n)) /* * n 次多項式 f について,f(a r^[0..m)) の値を並べたリストを返す. */ vm chirp_Z_transform(const MFPS& f, int m, mint a, mint r) { // 参考 : https://37zigen.com/multipoint-evaluation/#Chirp_Z-transform // verify : https://judge.yosupo.jp/problem/multipoint_evaluation_on_geometric_sequence //【方法】 // f(z) = Σi∈[0..n) f[i] z^i とおく.恒等式 // 2ij = (i+j)(i+j-1) - i(i-1) - j(j-1) // を用いると, // f(a r^j) // = Σi∈[0..n) f[i] (a r^j)^i // = Σi∈[0..n) f[i] a^i r^(ij) // = Σi∈[0..n) f[i] a^i r^((i+j)(i+j-1)/2 - i(i-1)/2 - j(j-1)/2) // = r^(-j(j-1)/2) Σi∈[0..n) f[i] a^i r^(-i(i-1)/2) r^((i+j)(i+j-1)/2) // となる.これはほぼ畳込みの形なので高速に計算できる. // 公比が 0 の場合の例外処理 if (r == 0) { vm res(m, f[0]); res[0] = f.assign(a); return res; } int n = sz(f); vm r_inv_ppow(max(n, m)); mint r_inv = r.inv(), r_inv_pow = 1; r_inv_ppow[0] = 1; rep(i, max(n, m) - 1) { r_inv_ppow[i + 1] = r_inv_ppow[i] * r_inv_pow; r_inv_pow *= r_inv; } MFPS r_ppow(0, n + m); mint r_pow = 1; r_ppow[0] = 1; rep(i, n + m - 1) { r_ppow[i + 1] = r_ppow[i] * r_pow; r_pow *= r; } MFPS F(0, n); mint a_pow = 1; rep(i, n) { F[i] = f[i] * a_pow * r_inv_ppow[i]; a_pow *= a; } F = F.rev(); auto G = F * r_ppow; vm res(m); rep(j, m) res[j] = G[n - 1 + j] * r_inv_ppow[j]; return res; } //【ラグランジュ補間(多項式復元,等比数列)】O(n log n) /* * n 点での値 f(a r^i) = y[i] から定まる n-1 次多項式 f(x) を返す. * * 利用:【一次式の積の展開(等比数列)】,【多点評価(等比数列)】 */ MFPS lagrange_interpolation(mint a, mint r, const vm& y) { // 参考 : https://37zigen.com/lagrange-interpolation/ // verify : https://judge.yosupo.jp/problem/polynomial_interpolation_on_geometric_sequence //【方法】 // 通常のラグランジュ補間による多項式復元と同じく, // 一次式の積の展開 → 微分 → 多点評価 → 通分 // の順に計算する. // // 微分の計算量は元々 O(n) なので問題ない. // 一次式の積の展開と多点評価については O(n log n) の等比数列 ver があるのでそれを用いる. // 通分については,これが多点評価と転置の関係にあることに注意すると, // 対角行列をヴァンデルモンド行列の左右どちらから掛けるかの違いしかないので // 多点評価の等比数列 ver を使い回すことができる. int n = sz(y); if (n == 0) return MFPS(); MFPS g = expand_geometric(n, -a, r); MFPS Dg(0, n); repi(i, 1, n) Dg[i - 1] = g[i] * i; vm b = chirp_Z_transform(Dg, n, a, r); MFPS h(y); rep(i, n) h[i] /= b[i]; vm fpg = chirp_Z_transform(h, n, 1, r); mint a_pow = 1; rep(i, n) { fpg[i] *= a_pow; a_pow *= a; } reverse(all(fpg)); auto f = MFPS(fpg) * g; f <<= sz(f) - n; return f; } template VTYPE solve(const string& s, vector> matAs, vm vecP) { int DIM = sz(vecP); int COL = sz(matAs); // 耳 DP vm dp(DIM); dp[0] = 1; // 重ね合わせ用 //VTYPE matA[DIM][DIM]; //rep(i, DIM) rep(j, DIM) { // matA[i][j] = 0; // rep(c, COL) matA[i][j] += matAs[c][i][j]; //} auto apply = [&](const vm& x, int col) { vm z(DIM); rep(j, DIM) rep(i, DIM) z[j] += x[i] * matAs[col][i][j]; return z; }; repe(c, s) { dp = apply(dp, c - '0'); } VTYPE res = 0; rep(i, DIM) res += dp[i] * vecP[i]; return res; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); //【方法】 // 愚直を書いて集めたデータをもとに遷移行列を復元する. //【使い方】 // 1. mint naive(文字列) を実装する. // 2. embed_coefs(文字の種類数); を実行する. // 3. 出力を solve() 内に貼る. // 4. auto dp = solve<答えの型>(文字列) で勝手に DP してくれる. // 引数:COL, len_min, len_max, LB_max // embed_coefs(2, 0, INF, INF); ll n; cin >> n; string s = bitset<60>(n).to_string(); BASE = 10; dump("naive:", naive(s)); dump("====="); int D = 125; vm ys(D); rep(d, D) { BASE = mint(2).pow(d); auto [matAs, vecP] = embed_coefs(2, 0, 3, INF); ys[d] = solve(s, matAs, vecP); } auto f = lagrange_interpolation(1, 2, ys); // CRT 用 //int res1 = solve>(s).val(); //int res2 = solve2>(s).val(); //auto [res, z] = crt({ res1 , res2 }, { 1073741827 , 1073741831 }); cout << f[60] << "\n"; } /* ----------- len: 0 -------------- L: 1 DIM = 0 ss[is]: ss[js]: ----------- len: 1 -------------- L: 3 DIM = 2 ss[is]: 1 ss[js]: 1 ----------- len: 2 -------------- L: 7 DIM = 4 ss[is]: 1 10 11 ss[js]: 0 1 00 ----------- len: 3 -------------- L: 15 DIM = 8 ss[is]: 1 10 11 100 101 110 111 ss[js]: 0 1 00 01 10 11 000 ----------- len: 4 -------------- L: 31 DIM = 16 ss[is]: 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 ss[js]: 0 1 00 01 10 11 000 001 010 011 100 101 111 0000 0001 ----------- len: 5 -------------- L: 63 DIM = 22 ss[is]: 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 10001 10010 10011 10111 11111 ss[js]: 0 1 00 01 10 11 000 001 010 011 100 101 111 0000 0001 0010 0111 1111 00000 00001 00010 ----------- len: 6 -------------- L: 127 DIM = 27 ss[is]: 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 10001 10010 10011 10100 10111 11111 100000 100001 101111 111111 ss[js]: 0 1 00 01 10 11 000 001 010 011 100 101 111 0000 0001 0010 0111 1111 00000 00001 00010 01111 11111 000000 000001 000010 ----------- len: 7 -------------- L: 255 */