#line 2 "/home/user/competitive_programming/library_for_cpp/template/template.hpp" using namespace std; // intrinstic #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // utility #line 2 "/home/user/competitive_programming/library_for_cpp/template/utility.hpp" using ll = long long; // a ← max(a, b) を実行する. a が更新されたら, 返り値が true. template inline bool chmax(T &a, const U b){ return (a < b ? a = b, 1: 0); } // a ← min(a, b) を実行する. a が更新されたら, 返り値が true. template inline bool chmin(T &a, const U b){ return (a > b ? a = b, 1: 0); } // a の最大値を取得する. template inline T max(const vector &a){ if (a.empty()) throw invalid_argument("vector is empty."); return *max_element(a.begin(), a.end()); } // vector a の最小値を取得する. template inline T min(const vector &a){ if (a.empty()) throw invalid_argument("vector is empty."); return *min_element(a.begin(), a.end()); } // vector a の最大値のインデックスを取得する. template inline size_t argmax(const vector &a){ if (a.empty()) throw std::invalid_argument("vector is empty."); return distance(a.begin(), max_element(a.begin(), a.end())); } // vector a の最小値のインデックスを取得する. template inline size_t argmin(const vector &a){ if (a.empty()) throw invalid_argument("vector is empty."); return distance(a.begin(), min_element(a.begin(), a.end())); } #line 59 "/home/user/competitive_programming/library_for_cpp/template/template.hpp" // math #line 2 "/home/user/competitive_programming/library_for_cpp/template/math.hpp" // 演算子 template T add(const T &x, const T &y) { return x + y; } template T sub(const T &x, const T &y) { return x - y; } template T mul(const T &x, const T &y) { return x * y; } template T neg(const T &x) { return -x; } template T bitwise_and(const T &x, const T &y) { return x & y; } template T bitwise_or(const T &x, const T &y) { return x | y; } template T bitwise_xor(const T &x, const T &y) { return x ^ y; } // 除算に関する関数 // floor(x / y) を求める. template T div_floor(T x, U y){ return (x > 0 ? x / y: (x - y + 1) / y); } // ceil(x / y) を求める. template T div_ceil(T x, U y){ return (x > 0 ? (x + y - 1) / y: x / y) ;} // x を y で割った余りを求める. template T safe_mod(T x, U y){ T q = div_floor(x, y); return x - q * y ; } // x を y で割った商と余りを求める. template pair divmod(T x, U y){ T q = div_floor(x, y); return {q, x - q * y}; } // 四捨五入を求める. template T round(T x, U y){ T q, r; tie (q, r) = divmod(x, y); return (r >= div_ceil(y, 2)) ? q + 1 : q; } // 指数に関する関数 // x の y 乗を求める. ll intpow(ll x, ll y){ ll a = 1; while (y){ if (y & 1) { a *= x; } x *= x; y >>= 1; } return a; } // x の y 乗を z で割った余りを求める. ll modpow(ll x, ll y, ll z){ ll a = 1; while (y){ if (y & 1) { (a *= x) %= z; } (x *= x) %= z; y >>= 1; } return a; } // x の y 乗を z で割った余りを求める. template T modpow(T x, U y, T z) { T a = 1; while (y) { if (y & 1) { (a *= x) %= z; } (x *= x) %= z; y >>= 1; } return a; } // vector の要素の総和を求める. ll sum(vector &X){ ll y = 0; for (auto &&x: X) { y+=x; } return y; } // vector の要素の総和を求める. template T sum(vector &X){ T y = T(0); for (auto &&x: X) { y += x; } return y; } // a x + b y = gcd(a, b) を満たす整数の組 (a, b) に対して, (x, y, gcd(a, b)) を求める. tuple Extended_Euclid(ll a, ll b) { ll s = 1, t = 0, u = 0, v = 1; while (b) { ll q; tie(q, a, b) = make_tuple(div_floor(a, b), b, safe_mod(a, b)); tie(s, t) = make_pair(t, s - q * t); tie(u, v) = make_pair(v, u - q * v); } return make_tuple(s, u, a); } // floor(sqrt(N)) を求める (N < 0 のときは, 0 とする). ll isqrt(const ll &N) { if (N <= 0) { return 0; } ll x = sqrt(N); while ((x + 1) * (x + 1) <= N) { x++; } while (x * x > N) { x--; } return x; } // floor(sqrt(N)) を求める (N < 0 のときは, 0 とする). ll floor_sqrt(const ll &N) { return isqrt(N); } // ceil(sqrt(N)) を求める (N < 0 のときは, 0 とする). ll ceil_sqrt(const ll &N) { ll x = isqrt(N); return x * x == N ? x : x + 1; } #line 62 "/home/user/competitive_programming/library_for_cpp/template/template.hpp" // inout #line 1 "/home/user/competitive_programming/library_for_cpp/template/inout.hpp" // 入出力 template void input(T&... a){ (cin >> ... >> a); } void print(){ cout << "\n"; } template void print(const T& a, const Ts&... b){ cout << a; (cout << ... << (cout << " ", b)); cout << "\n"; } template istream &operator>>(istream &is, pair &P){ is >> P.first >> P.second; return is; } template ostream &operator<<(ostream &os, const pair &P){ os << P.first << " " << P.second; return os; } template vector vector_input(int N, int index){ vector X(N+index); for (int i=index; i> X[i]; return X; } template istream &operator>>(istream &is, vector &X){ for (auto &x: X) { is >> x; } return is; } template ostream &operator<<(ostream &os, const vector &X){ int s = (int)X.size(); for (int i = 0; i < s; i++) { os << (i ? " " : "") << X[i]; } return os; } template ostream &operator<<(ostream &os, const unordered_set &S){ int i = 0; for (T a: S) {os << (i ? " ": "") << a; i++;} return os; } template ostream &operator<<(ostream &os, const set &S){ int i = 0; for (T a: S) { os << (i ? " ": "") << a; i++; } return os; } template ostream &operator<<(ostream &os, const unordered_multiset &S){ int i = 0; for (T a: S) { os << (i ? " ": "") << a; i++; } return os; } template ostream &operator<<(ostream &os, const multiset &S){ int i = 0; for (T a: S) { os << (i ? " ": "") << a; i++; } return os; } template std::vector input_vector(size_t n, size_t offset = 0) { std::vector res; // 最初に必要な全容量を確保(再確保を防ぐ) res.reserve(n + offset); // offset 分をデフォルト値で埋める(特別 indexed 用) res.assign(offset, T()); for (size_t i = 0; i < n; ++i) { T el; if (!(std::cin >> el)) break; res.push_back(std::move(el)); } return res; } #line 65 "/home/user/competitive_programming/library_for_cpp/template/template.hpp" // macro #line 2 "/home/user/competitive_programming/library_for_cpp/template/macro.hpp" // マクロの定義 #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define unless(cond) if (!(cond)) #define until(cond) while (!(cond)) #define loop while (true) // オーバーロードマクロ #define overload2(_1, _2, name, ...) name #define overload3(_1, _2, _3, name, ...) name #define overload4(_1, _2, _3, _4, name, ...) name #define overload5(_1, _2, _3, _4, _5, name, ...) name // 繰り返し系 #define rep1(n) for (ll i = 0; i < n; i++) #define rep2(i, n) for (ll i = 0; i < n; i++) #define rep3(i, a, b) for (ll i = a; i < b; i++) #define rep4(i, a, b, c) for (ll i = a; i < b; i += c) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define foreach1(x, a) for (auto &&x: a) #define foreach2(x, y, a) for (auto &&[x, y]: a) #define foreach3(x, y, z, a) for (auto &&[x, y, z]: a) #define foreach4(x, y, z, w, a) for (auto &&[x, y, z, w]: a) #define foreach(...) overload5(__VA_ARGS__, foreach4, foreach3, foreach2, foreach1)(__VA_ARGS__) #line 68 "/home/user/competitive_programming/library_for_cpp/template/template.hpp" // bitop #line 2 "/home/user/competitive_programming/library_for_cpp/template/bitop.hpp" // 非負整数 x の bit legnth を求める. ll bit_length(ll x) { if (x == 0) { return 0; } return (sizeof(long) * CHAR_BIT) - __builtin_clzll(x); } // 非負整数 x の popcount を求める. ll popcount(ll x) { return __builtin_popcountll(x); } // 正の整数 x に対して, floor(log2(x)) を求める. ll floor_log2(ll x) { return bit_length(x) - 1; } // 正の整数 x に対して, ceil(log2(x)) を求める. ll ceil_log2(ll x) { return bit_length(x - 1); } // x の第 k ビットを取得する int get_bit(ll x, int k) { return (x >> k) & 1; } // x のビット列を取得する. // k はビット列の長さとする. vector get_bits(ll x, int k) { vector bits(k); rep(i, k) { bits[i] = x & 1; x >>= 1; } return bits; } // x のビット列を取得する. vector get_bits(ll x) { return get_bits(x, bit_length(x)); } #line 71 "/home/user/competitive_programming/library_for_cpp/template/template.hpp" // exception #line 2 "/home/user/competitive_programming/library_for_cpp/template/exception.hpp" class NotExist: public exception { private: string message; public: NotExist() : message("求めようとしていたものは存在しません.") {} const char* what() const noexcept override { return message.c_str(); } }; #line 2 "/home/user/competitive_programming/library_for_cpp/Algebra/modint.hpp" #line 4 "/home/user/competitive_programming/library_for_cpp/Algebra/modint.hpp" template class modint { public: static constexpr int _mod = M; uint64_t x; public: static int mod() { return _mod; } static modint raw(int v) { modint a; a.x = v; return a; } // 初期化 constexpr modint(): x(0) {} constexpr modint(int64_t a) { int64_t w = (int64_t)(a) % mod(); if (w < 0) { w += mod(); } x = w; } // マイナス元 modint operator-() const { return modint(-x); } // 加法 modint& operator+=(const modint &b){ if ((x += b.x) >= mod()) x -= mod(); return *this; } friend modint operator+(const modint &x, const modint &y) { return modint(x) += y; } // 減法 modint& operator-=(const modint &b){ if ((x += mod() - b.x) >= mod()) x -= mod(); return *this; } friend modint operator-(const modint &x, const modint &y) { return modint(x) -= y; } // 乗法 modint& operator*=(const modint &b){ (x *= b.x) %= mod(); return *this; } friend modint operator*(const modint &x, const modint &y) { return modint(x) *= y; } friend modint operator*(const int &x, const modint &y) { return modint(x) *= y; } friend modint operator*(const ll &x, const modint &y) { return modint(x) *= y; } // 除法 modint& operator/=(const modint &b){ return (*this) *= b.inverse(); } friend modint operator/(const modint &x, const modint &y) { return modint(x) /= y; } modint inverse() const { int64_t s = 1, t = 0; int64_t a = x, b = mod(); while (b > 0) { int64_t q = a / b; a -= q * b; swap(a, b); s -= q * t; swap(s, t); } assert (a == 1); return modint(s); } // 比較 friend bool operator==(const modint &a, const modint &b) { return (a.x == b.x); } friend bool operator==(const modint &a, const int &b) { return a.x == safe_mod(b, mod()); } friend bool operator!=(const modint &a, const modint &b) { return (a.x != b.x); } // 入力 friend istream &operator>>(istream &is, modint &a) { int64_t x; is >> x; a.x = safe_mod(x, mod()); return is; } // 出力 friend ostream &operator<<(ostream &os, const modint &a) { return os << a.x; } bool is_zero() const { return x == 0; } bool is_member(ll a) const { return x == (a % mod() + mod()) % mod(); } }; template modint pow(modint x, long long n) { if (n < 0) { return pow(x, -n).inverse(); } auto res = modint(1); for (; n; n >>= 1) { if (n & 1) { res *= x; } x *= x; } return res; } #line 2 "/home/user/competitive_programming/library_for_cpp/Segment_Tree/Lazy_Segment_Tree.hpp" /* 遅延セグメント木 M を Monoid とする. M 上の列に対して, Monid F からの区間作用と, 連続部分列に対する区間積の計算の処理を高速に行う. * M: Monoid * F: Monoid * op: M x M → M: M 上の演算 * unit: M の単位元 * act: F x M → M: F からの M の演算 * comp: F x F → F: F 同士の合成 (左の要素が新しい) * id: F の単位元 (条件) M: Monoid, F = {f: F x M → M: 作用素} に対して, 以下が成立する. * F は写像の合成に閉じている. つまり, 任意の f,g in F に対して, comp(f,g) in F * F は M に作用する. つまり, 以下が成り立つ. * F の単位元 id は恒等的に作用する. つまり, 任意の x in M に対して id(x) = x となる. * 任意の f in F, x,y in M に対して, f(xy) = f(x) f(y) である. (注意) 作用素は左から掛ける. 更新も左から行う. */ #line 27 "/home/user/competitive_programming/library_for_cpp/Segment_Tree/Lazy_Segment_Tree.hpp" template class Lazy_Segment_Tree { public: int n, depth; const function op; const function act; const function comp; vector data; const M unit; vector lazy; const F id; public: Lazy_Segment_Tree(int size, const function op, const M unit, const function act, const function comp, const F id): n(), op(op), unit(unit), act(act), comp(comp), id(id), depth(0) { int m = 1; while (size > m) { depth++, m *= 2; } n = m; data.assign(2 * m, unit); lazy.assign(2 * m, id); } Lazy_Segment_Tree(const vector &vec, const function op, const M unit, const function act, const function comp, const F id): Lazy_Segment_Tree(vec.size(), op, unit, act, comp, id){ for (int k = 0; k < vec.size(); k++) { data[k+n] = vec[k]; } for (int k = n - 1; k > 0; k--) { data[k] = op(data[k << 1], data[k << 1 | 1]); } } private: inline M evaluate_at(int m){ return lazy[m] == id ? data[m] : act(lazy[m], data[m]); } /// @brief セグメントツリーの第 m 要素を更新し, 遅延していた作用を子に伝搬させる. /// @param m void push(int m){ data[m] = evaluate_at(m); if ((m < n) && (lazy[m] != id)){ int left = m << 1; lazy[left] = (lazy[left] == id) ? lazy[m] : comp(lazy[m], lazy[left]); int right = m << 1 | 1; lazy[right] = (lazy[right] == id) ? lazy[m] : comp(lazy[m], lazy[right]); } lazy[m] = id; } /// @brief セグメントツリーの第 m 要素を含む区間についての lazy の要素について, 子への更新を行う. /// @param m inline void propagate_above(int m){ int h = 0, mm = m; for (mm; mm; mm >>= 1, h++){} for (h--; h >= 0; h--) { push(m >> h); } } /// @brief セグメントツリーの第 m 要素を含む区間についての data の要素を更新する. /// @param m inline void recalc_above(int m){ while (m > 1){ m >>= 1; data[m] = op(evaluate_at(m << 1), evaluate_at(m << 1 | 1)); } } pair range_propagate(int l, int r){ int X = l + n, Y = r + n - 1, L0 = -1, R0 = -1; while (X < Y){ if (X & 1) { L0 = max(L0, X++); } if ((Y & 1) ==0 ) { R0 = max(R0, Y--); } X >>= 1; Y >>= 1; } L0 = max(L0, X); R0 = max(R0, Y); propagate_above(L0); propagate_above(R0); return make_pair(L0, R0); } public: /// @brief 第 k 項を取得する. /// @param k /// @return 第 k 項 inline M operator[](int k){ int m = k + n; propagate_above(m); lazy[m] = id; return data[m] = evaluate_at(m); } /// @brief i = l, l + 1, ..., r に対して, 第 i 項に対して alpha を作用させる. /// @param l 区間の左端 /// @param r 区間の右端 /// @param alpha 作用 void action(int l, int r, F alpha){ int L0, R0; tie(L0, R0) = range_propagate(l, r + 1); int L = l + n, R = r + n + 1; while (L < R){ if (L & 1){ lazy[L] = (lazy[L] == id) ? alpha : comp(alpha, lazy[L]); L++; } if (R & 1){ R--; lazy[R] = (lazy[R] == id) ? alpha : comp(alpha, lazy[R]); } L >>= 1; R >>= 1; } recalc_above(L0); recalc_above(R0); } /// @brief 第 k 項を x に更新する. /// @param k 更新場所 /// @param x 更新後の要素 inline void update(int k, M x){ int m = k + n; propagate_above(m); data[m] = x; lazy[m] = id; recalc_above(m); } /// @brief 積 x[l] * x[l + 1] * ... * x[r] を求める. /// @param l 区間の左端 /// @param r 区間の右端 /// @return 積 M product(int l, int r){ int L0, R0; tie(L0, R0) = range_propagate(l, r + 1); int L = l + n, R = r + n + 1; M vL = unit, vR = unit; while (L < R){ if (L & 1) { vL = op(vL, evaluate_at(L)); L++; } if (R & 1) { R--; vR=op(evaluate_at(R), vR); } L >>= 1; R >>= 1; } return op(vL, vR); } /// @brief 全要素における区間積を求める. /// @return 残要素における区間積 inline M all_product() {return product(0, n - 1);} template int max_right(int l, const Func &cond) { assert(cond(unit)); if (l == n) return n; l += n; propagate_above(l); M sm = unit; do { while (l % 2 == 0) l >>= 1; if (!cond(op(sm, evaluate_at(l)))) { while (l < n) { push(l); l <<= 1; if (cond(op(sm, evaluate_at(l)))) { sm = op(sm, evaluate_at(l)); l++; } } return l - n; } sm = op(sm, evaluate_at(l)); l++; } while ((l & -l) != l); return n; } void refresh() { for (int m = 1; m < 2 * n; m++){ data[m] = evaluate_at(m); if ((m < n) && (lazy[m] != id)){ int left = m << 1; lazy[left] = (lazy[left] == id) ? lazy[m] : comp(lazy[m], lazy[left]); int right = m << 1 | 1; lazy[right] = (lazy[right] == id) ? lazy[m] : comp(lazy[m], lazy[m << 1 | 1]); } lazy[m] = id; } } }; #line 2 "/home/user/competitive_programming/library_for_cpp/Segment_Tree/preset/Range_Add_Range_Sum.hpp" #line 4 "/home/user/competitive_programming/library_for_cpp/Segment_Tree/preset/Range_Add_Range_Sum.hpp" template class Range_Add_Range_Sum_Lazy_Segment_Tree : public Lazy_Segment_Tree, T> { using M = pair; using F = T; static M op(M x, M y) { return {x.first + y.first, x.second + y.second}; } static M act(F a, M x) { return {x.first + a * T(x.second), x.second}; } static F comp(F a, F b) { return a + b; } static vector convert(const vector &vec) { vector res(vec.size()); for (int i = 0; i < (int)vec.size(); ++i) { res[i] = {vec[i], 1}; } return res; } public: Range_Add_Range_Sum_Lazy_Segment_Tree(int n) : Lazy_Segment_Tree( vector(n, {0, 1}), op, {0, 0}, act, comp, 0 ) {} Range_Add_Range_Sum_Lazy_Segment_Tree(const vector &vec) : Lazy_Segment_Tree( convert(vec), op, {0, 0}, act, comp, 0 ) {} void update(int k, T x) { Lazy_Segment_Tree::update(k, {x, 1}); } T operator[](int k) { return Lazy_Segment_Tree::operator[](k).first; } void add(int l, int r, T x) { this->action(l, r, x); } T all_sum() { return this->all_product().first; } T sum(int l, int r) { return this->product(l, r).first; } }; #line 2 "/home/user/competitive_programming/library_for_cpp/Segment_Tree/preset/Range_Add_Range_Min.hpp" #line 4 "/home/user/competitive_programming/library_for_cpp/Segment_Tree/preset/Range_Add_Range_Min.hpp" template class Range_Add_Range_Min_Lazy_Segment_Tree : public Lazy_Segment_Tree { using M = T; using F = T; static M op(M x, M y) { return x < y ? x : y; } static M act(F a, M x) { return x + a; } static F comp(F a, F b) { return a + b; } public: Range_Add_Range_Min_Lazy_Segment_Tree(int n, T first, T unit) : Lazy_Segment_Tree( vector(n, first), op, unit, act, comp, 0 ) {} Range_Add_Range_Min_Lazy_Segment_Tree(int n, T unit) : Range_Add_Range_Min_Lazy_Segment_Tree(n, unit, unit) {} Range_Add_Range_Min_Lazy_Segment_Tree(const vector &vec, T unit) : Lazy_Segment_Tree( vec, op, unit, act, comp, 0 ) {} void update(int k, T x) { Lazy_Segment_Tree::update(k, x); } T operator[](int k) { return Lazy_Segment_Tree::operator[](k); } void add(int l, int r, T x) { this->action(l, r, x); } T min(int l, int r) { return this->product(l, r); } }; #line 2 "/home/user/competitive_programming/library_for_cpp/Modulo_Polynomial/Numeric_Theory_Translation.hpp" #line 2 "/home/user/competitive_programming/library_for_cpp/Modulo_Polynomial/Modulo_Polynomial.hpp" #line 5 "/home/user/competitive_programming/library_for_cpp/Modulo_Polynomial/Modulo_Polynomial.hpp" template class Modulo_Polynomial { public: int precision = 0; public: vector poly; Modulo_Polynomial(vector _poly, int precision): precision(precision) { if (_poly.size() > precision) { _poly.resize(precision); } poly = _poly; } Modulo_Polynomial() = default; Modulo_Polynomial(vector poly) : Modulo_Polynomial(poly, poly.size()) {} Modulo_Polynomial(int precision) : Modulo_Polynomial({}, precision) {} // 演算子の定義 public: // マイナス元 Modulo_Polynomial operator-() const { Modulo_Polynomial res(*this); for (auto &a : res.poly) { a = -a; } return res; } // 加法 Modulo_Polynomial& operator+=(const Modulo_Polynomial &P){ if (size() < P.size()) { resize(P.size()); } for (int i = 0; i < (int) P.poly.size(); i++) { poly[i] += P[i]; } reduce(); return *this; } Modulo_Polynomial& operator+=(const mint &a){ if (poly.empty()) { resize(1); } poly[0] += a; reduce(); return *this; } friend Modulo_Polynomial operator+(const Modulo_Polynomial &lhs, const Modulo_Polynomial &rhs) { return Modulo_Polynomial(lhs) += rhs; } Modulo_Polynomial operator+(const mint &a) const { return Modulo_Polynomial(*this) += a; } // 減法 Modulo_Polynomial& operator-=(const Modulo_Polynomial &P){ if (size() < P.size()) { resize(P.size()); } for (int i = 0; i < (int) P.poly.size(); i++) { poly[i] -= P[i]; } reduce(); return *this; } Modulo_Polynomial& operator-=(const mint &a){ if (poly.empty()) { resize(1); } poly[0] -= a; reduce(); return *this; } friend Modulo_Polynomial operator-(const Modulo_Polynomial &lhs, const Modulo_Polynomial &rhs) { return Modulo_Polynomial(lhs) -= rhs; } Modulo_Polynomial operator-(const mint &a) const { return Modulo_Polynomial(*this) -= a; } // スカラー倍 Modulo_Polynomial& operator*=(const mint &a){ for (int i = 0; i < size(); i++) { poly[i] *= a; } reduce(); return *this; } Modulo_Polynomial operator*(const mint &a) const {return Modulo_Polynomial(*this) *= a;} friend Modulo_Polynomial operator*(const mint &a, const Modulo_Polynomial &P) { Modulo_Polynomial res(P); res *= a; return res; } // 積 Modulo_Polynomial& operator*=(const Modulo_Polynomial &P) { int r = min({(int) (poly.size() + P.poly.size()) - 1, precision, P.precision}); vector A(r); for (int i = 0; i < size(); i++) { for (int j = 0; j < P.size(); j++) { if (i + j < r) { A[i + j] += poly[i] * P.poly[j]; } } } poly = A; precision = min(precision, P.precision); return *this; } friend Modulo_Polynomial operator*(const Modulo_Polynomial &lhs, const Modulo_Polynomial &rhs) { return Modulo_Polynomial(lhs) *= rhs; } // スカラー除算 Modulo_Polynomial& operator/=(const mint &a) { mint a_inv = a.inverse(); for (int i = 0; i < size(); i++) { poly[i] *= a_inv; } return *this; } Modulo_Polynomial operator/(const mint &a) const { return Modulo_Polynomial(*this) /= a; } // index mint operator[] (int k) const { return (k < poly.size()) ? poly[k] : 0; } // istream friend istream &operator>>(istream &is, Modulo_Polynomial &P) { P.poly.resize(P.precision); for (int i = 0; i < (int)P.precision; i++) { is >> P.poly[i]; } return (is); } // ostream friend ostream &operator<<(ostream &os, const Modulo_Polynomial &P){ for (int i = 0; i < (int)P.poly.size(); i++){ os << (i ? " " : "") << P[i]; } return os; } // poly で保持しているベクトルの長さを size にする. // size = -1 のときは, size = precision に変換される. void resize(int size = -1) { if (size == -1) { size = this -> precision; } size = min(size, this -> precision); poly.resize(size); } bool is_zero() const { for (auto &a: poly) { unless(a.is_zero()) {return false;} } return true; } // 高次に連なる 0 を削除する void reduce() { while (!poly.empty() && poly.back().is_zero()) { poly.pop_back(); } } // 保持している多項式の乗法の項の長さを求める int size() const { return poly.size(); } // 次数を求める (ゼロ多項式の時は -1) int degree() const { for (int d = size() - 1; d >= 0; d--) { unless(poly[d].is_zero()) { return d; } } return -1; } // 位数 (係数が非ゼロである次数の最小値) int order() const { for (int d = 0; d < size(); d++) { unless(poly[d].is_zero()) { return d; } } return -1; } }; #line 5 "/home/user/competitive_programming/library_for_cpp/Modulo_Polynomial/Numeric_Theory_Translation.hpp" template class Numeric_Theory_Translation { public: F primitive; vector root, iroot, rate2, irate2, rate3, irate3; public: Numeric_Theory_Translation() { primitive = primitive_root(); build_up(); } private: F primitive_root(){ if (F::mod() == 2) { return F(1); } if (F::mod() == 998244353) { return F(3); } vector fac; int v = F::mod() - 1; for (int q = 2; q * q <= v; q++){ int e = 0; while (v % q == 0){ e++; v /= q; } if (e > 0) { fac.emplace_back(q); } } if (v > 1) { fac.emplace_back(v); } F g(2); while (true) { bool flag = true; for (int q: fac) { if (pow(g, (F::mod() - 1) / q) == 1){ flag = false; break; } } if (flag) { break; } g += 1; } return g; } void build_up() { int x = ~(F::mod() - 1) & (F::mod() - 2); int rank2 = bit_length(x); root.resize(rank2 + 1); iroot.resize(rank2 + 1); rate2.resize(max(0, rank2 - 1)); irate2.resize(max(0, rank2 - 1)); rate3.resize(max(0, rank2 - 2)); irate3.resize(max(0, rank2 - 2)); root.back() = pow(primitive, (F::mod() - 1) >> rank2); iroot.back() = root.back().inverse(); for (int i = rank2 - 1; i >= 0; i--){ root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } F prod(1), iprod(1); for (int i = 0; i < rank2 - 1; i++){ rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * prod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } prod = 1; iprod = 1; for (int i = 0; i < rank2 - 2; i++){ rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } public: void ntt(vector &A){ int N = A.size(); int h = ceil_log2(N); F I = root[2]; for (int l = 0; l < h;){ if (h - l == 1){ int p = 1 << (h - l - 1); F rot(1); for (int s = 0; s < (1 << l); s++){ int offset = s << (h - l); for(int i = 0; i < p; i++){ F x = A[i + offset], y = A[i + offset + p] * rot; A[i + offset] = x + y; A[i + offset + p] = x - y; } unless (s + 1 == (1 << l)){ rot *= rate2[bit_length(~s & -(~s)) - 1]; } } l++; } else { int p = 1 << (h - l - 2); F rot(1); for (int s = 0; s < (1 << l); s++){ F rot2 = rot * rot, rot3 = rot2 * rot; int offset = s << (h - l); for (int i = 0; i < p; i++){ F a0 = A[i + offset]; F a1 = A[i + offset + p] * rot; F a2 = A[i + offset + 2 * p] * rot2; F a3 = A[i + offset + 3 * p] * rot3; F alpha = (a1 - a3) * I; A[i + offset] = a0 + a2 + a1 + a3; A[i + offset + p] = a0 + a2 - a1 - a3; A[i + offset + 2 * p] = a0 - a2 + alpha; A[i + offset + 3 * p] = a0 - a2 - alpha; } unless(s + 1 == 1 << l) { rot *= rate3[bit_length(~s & -(~s)) - 1]; } } l += 2; } } } public: void inverse_ntt(vector &A){ int N = A.size(); int h = ceil_log2(N); F J = iroot[2]; for (int l = h; l > 0;){ if (l == 1){ int p = 1 << (h - l); F irot(1); for (int s = 0; s < (1 << (l - 1)); s++){ int offset = s << (h - l + 1); for(int i = 0; i < p; i++){ F x = A[i + offset], y = A[i + offset + p]; A[i + offset] = x + y; A[i + offset + p] = (x - y) * irot; } unless (s+1 == 1 << (l - 1) ) { irot *= irate2[bit_length(~s & -(~s)) -1]; } } l--; } else { int p = 1 << (h - l); F irot(1); for (int s=0; s<(1<<(l-2)); s++){ F irot2 = irot * irot, irot3 = irot2 *irot; int offset=s<<(h-l+2); for (int i = 0; i < p; i++){ F a0 = A[i + offset]; F a1 = A[i + offset + p]; F a2 = A[i + offset + 2 * p]; F a3 = A[i + offset + 3 * p]; F beta = (a2 - a3) * J; A[i + offset] = a0 + a2 + a1 + a3; A[i + offset + p] = (a0 - a1 + beta) * irot; A[i + offset + 2 * p] = (a0 + a1 - a2 - a3) * irot2; A[i + offset + 3 * p] = (a0 - a1 - beta) * irot3; } unless (s + 1 == 1 << (l - 2)) { irot *= irate3[bit_length(~s & -(~s)) - 1]; } } l-=2; } } F N_inv=F(N).inverse(); for (int i=0; i convolution(vector A, vector B){ if (A.empty() || B.empty()) return vector{}; int M=A.size(), N=B.size(), L=M+N-1; if (min(M,N)<64){ vector C(L); for(int i=0; i X(K), Y(K); copy(A.begin(), A.end(), X.begin()); copy(B.begin(), B.end(), Y.begin()); ntt(X); ntt(Y); for (int i=0; i inverse(vector P, int d) { int n = P.size(); assert(!P.empty() && !P[0].is_zero()); vector G{P[0].inverse()}; while (G.size() < d) { int m = G.size(); vector A(P.begin(), P.begin() + min(n, 2 * m)); A.resize(2 * m); vector B(G); B.resize(2 * m); ntt(A); ntt(B); for (int i = 0; i < 2 * m; i++) { A[i] *= B[i]; } inverse_ntt(A); A.erase(A.begin(), A.begin() + m); A.resize(2 * m); ntt(A); for (int i = 0; i < 2 * m; i++) { A[i] *= -B[i]; } inverse_ntt(A); G.insert(G.end(), A.begin(), A.begin() + m); } G.resize(d); return G; } vector inverse(vector P) { return inverse(P, P.size()); } vector multiple_convolution(vector> A) { if (A.empty()) { return {1}; } deque queue(A.size()); iota(queue.begin(), queue.end(), 0); while (queue.size() > 1) { int i = queue.front(); queue.pop_front(); int j = queue.front(); queue.pop_front(); A[i] = convolution(A[i], A[j]); queue.emplace_back(i); } return A[queue.back()]; } }; #line 2 "/home/user/competitive_programming/library_for_cpp/Binary_Search/General_Integer.hpp" // [L, R] 上で広義単調増加な条件 cond に対して, cond(x) が True になる最小の整数 x を二分探索で求める. // Args // T L: 下限 // T R: 上限 // function cond: [L, R] 上広義単調増加な条件 // T default_value: cond(R) が False の時の返り値 template T General_Binary_Increase_Search_Integer(T L, T R, const function cond, T default_value) { // 例外ケースの処理 // R でも False → 異常値 unless(cond(R)) { return default_value; } // L にて True → L if(cond(L)) { return L; } // 探索パート while (R - L > 1) { T C = L + (R - L) / 2; cond(C) ? R = C : L = C; } return R; } // [L, R] 上で広義単調減少な条件 cond に対して, cond(x) が True になる最大の整数 x を二分探索で求める. // Args // T L: 下限 // T R: 上限 // function cond: [L, R] 上広義単調減少な条件 // T default_value: cond(L) が False の時の返り値 template T General_Binary_Decrease_Search_Integer(T L, T R, const function cond, T default_value) { // 例外ケースの処理 // L でも False → 異常値 unless(cond(L)) { return default_value; } // R にて True → R if(cond(R)) { return R; } // 探索パート while (R - L > 1) { T C = L + (R - L) / 2; cond(C) ? L = C : R = C; } return L; } #line 8 "program.cpp" const ll Mod = 998244353; using mint = modint<998244353>; auto calculator = Numeric_Theory_Translation(); template vector vector_mapping(const vector &vec, const FUNC &func) { int n = vec.size(); vector res(n); for (int i = 0; i < n; i++) { res[i] = func(vec[i]); } return res; } using M = pair; vector> solve() { int N, Q; cin >> N >> Q; string S; cin >> S; S = "*" + S; auto W = vector_input(N + 1, 0); S[N] = 'B'; auto X = Lazy_Segment_Tree ( vector_mapping( vector(S.begin(), S.end()), [](const char c) -> M { return c == 'G' ? make_pair(1, 0) : make_pair(0, 1); } ), [](const M x, const M y) -> M { return { x.first + y.first, x.second + y.second }; }, {0, 0}, [](const int a, const M x) -> M { return { safe_mod(a, 2) == 0 ? x : make_pair(x.second, x.first) }; }, add, 0 ); auto W_sum = Range_Add_Range_Sum_Lazy_Segment_Tree(W); auto latest_backed_at = [&X, &N](const int v) -> int { M alpha = X.product(1, v - 1); if (alpha.second == 0) { return 0; } return X.max_right(1, [&alpha](const M z) -> bool { return z.second < alpha.second; }); }; auto next_back_at = [&X, &N](const int v) -> int { M beta = X.product(1, v - 1); return min(X.max_right(1, [&beta](const M z) -> bool { return z.second <= beta.second; }), N); }; vector> ans; for (int q = 1; q <= Q; ++q) { int t; cin >> t; if (t == 1) { int l, r; cin >> l >> r; if (r == N) r--; X.action(l, r, 1); } else if (t == 2) { int l, r, a; cin >> l >> r >> a; W_sum.action(l, r, a); } else if (t == 3) { int v, K; cin >> v >> K; auto U = vector_input(K, 0); int r = latest_backed_at(v); unordered_map back_time; int less = 0; for (const int u: U) { if (u < v) { less++; continue; } int t = latest_backed_at(u); back_time[t]++; } int vr = next_back_at(v); mint p = mint(W_sum.sum(v, vr)) / mint(W_sum.sum(0, vr)); vector> polys; vector poly(back_time[r] + 1 + less, 0); poly[back_time[r]] = 1; polys.emplace_back(poly); for (auto &&[t, d]: back_time) { if (t == r) continue; vector poly(d + 1, 0); poly[0] += 1 - p; poly[d] += p; polys.emplace_back(poly); } auto P = calculator.multiple_convolution(polys); ans.emplace_back(P); } } return ans; } int main() { for (auto ans: solve()) { cout << ans << "\n"; } }