// 入力制約/フォーマットチェック #ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE #define USE_GETLINE #endif #ifdef INCLUDE_MAIN void Solve() { CEXPR( int , bound_N , 2e5 ); CEXPR( int , bound_Q , 2e5 ); GETLINE_COUNT_ASSERT( NQ_str , ' ' , 2 ); STOI( NQ_str , N , 1 , bound_N ); STOI( NQ_str , Q , 1 , bound_Q ); GETLINE( S ); assert( len( S ) == N ); RUN( S , c ){ assert( c == 'G' || c == 'B' ); } CEXPR( int , bound_W , P - 1 ); GETLINE_COUNT_ASSERT( W_str , ' ' , N + 1 ); STOI_A( W_str , 0 , N + 1 , W , 0 , bound_W ); assert( W[0] > 0 ); ll sum_W = Sum( W ); assert( sum_W <= bound_W ); LazySqrtDecomposition lsd( AdditiveGroup{} , AbstractModule{ 0 , [&](const int& r,int u){ return move( u += r ); } , MinSemilattice{ int( 1e9 ) } } , move( W ) ); int K_sum = 0; REPEAT( Q ){ GETLINE_COUNT( query_str , ' ' ); STOI( query_str , type , 1 , 3 ); if( type == 1 ){ assert( query_str_count == 3 ); STOI( query_str , l , 1 , N ); STOI( query_str , r , l , N ); } else if( type == 2 ){ assert( query_str_count == 4 ); STOI( query_str , l , 0 , N ); STOI( query_str , r , l , N ); STOI( query_str , a , -sum_W , sum_W ); if( l <= 0 && 0 <= r ){ W[0] += a; assert( W[0] > 0 ); } sum_W += a * ( r - l + 1 ); assert( sum_W <= bound_W ); lsd.IntervalAct( l , r , a ); assert( lsd.IntervalProduct( l , r ) >= 0 ); } else { assert( query_str_count == 3 ); STOI( query_str , v , 0 , N ); STOI( query_str , K , 1 , N + 1 ); K_sum += K; GETLINE_COUNT_ASSERT( u_str , ' ' , K ); STOI_A( u_str , 0 , K , u , 0 , N ); FOR( k , 1 , K ){ assert( u[k-1] < u[k] ); } } } CEXPR( int , bound_K_sum , 4e5 ); assert( K_sum <= bound_K_sum ); RETURN( "WA" ); } REPEAT_MAIN(1); #else // INCLUDE_MAIN #ifdef INCLUDE_LIBRARY // https://github.com/p-adic/cpp // VVV ライブラリは以下に挿入する。 /* 圧縮用 */ #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define IS basic_istream #define OS basic_ostream #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin // CEXPRがCEに依存しているので削除しない。 // redefinitionを避けるため圧縮元はincludeしない。 // Module // Graph // が必要な場合はここに追加する。 CEXPR(uint,P,998244353); #ifdef DEBUG #include "c:/Users/user/Documents/Programming/Mathematics/Algebra/Monoid/Group/Module/a_Body.hpp" #else #define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE #define DC_OF_POINT(POINT)IN U& POINT()NE #define DF_OF_CPOINT(POINT)TE IN CO U& VirtualPointedSet::POINT()CO NE{RE Point();} #define DF_OF_POINT(POINT)TE IN U& VirtualPointedSet::POINT()NE{RE Point();} TE CL UnderlyingSet{PU:US type = U;};TE CL VirtualPointedSet:VI PU UnderlyingSet{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE CL PointedSet:VI PU VirtualPointedSet{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE CL VirtualNSet:VI PU UnderlyingSet{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE CL AbstractNSet:VI PU VirtualNSet{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN AbstractNSet& OP=(CO AbstractNSet&)NE;IN U Transfer(CO U& u);};TE CL VirtualMagma:VI PU UnderlyingSet{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE CL AdditiveMagma:VI PU VirtualMagma{PU:IN U Product(U u0,CO U& u1);};TE CL MultiplicativeMagma:VI PU VirtualMagma{PU:IN U Product(U u0,CO U& u1);};TE CL AbstractMagma:VI PU VirtualMagma{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN AbstractMagma& OP=(CO AbstractMagma&)NE;IN U Product(U u0,CO U& u1);}; TE IN PointedSet::PointedSet(U b_U):m_b_U(MO(b_U)){}TE IN CO U& PointedSet::Point()CO NE{RE m_b_U;}TE IN U& PointedSet::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE IN AbstractNSet::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v);}TE IN AbstractNSet& AbstractNSet::operator=(CO AbstractNSet&)NE{RE *TH;}TE IN U AbstractNSet::Transfer(CO U& u){RE m_f_U(u);}TE IN U VirtualNSet::Inverse(CO U& u){RE Transfer(u);}TE IN AbstractMagma::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v);}TE IN AbstractMagma& AbstractMagma::OP=(CO AbstractMagma&)NE{RE *TH;}TE IN U AdditiveMagma::Product(U u0,CO U& u1){RE MO(u0 += u1);}TE IN U MultiplicativeMagma::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE IN U AbstractMagma::Product(U u0,CO U& u1){RE m_m_U(MO(u0),u1);}TE IN U VirtualMagma::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);} TE CL VirtualMonoid:VI PU VirtualMagma,VI PU VirtualPointedSet{};TE CL AdditiveMonoid:VI PU VirtualMonoid,PU AdditiveMagma,PU PointedSet{};TE CL MultiplicativeMonoid:VI PU VirtualMonoid,PU MultiplicativeMagma,PU PointedSet{PU:IN MultiplicativeMonoid(U e_U);};TE CL AbstractMonoid:VI PU VirtualMonoid,PU AbstractMagma,PU PointedSet{PU:IN AbstractMonoid(M_U m_U,U e_U);}; TE IN MultiplicativeMonoid::MultiplicativeMonoid(U e_U):PointedSet(MO(e_U)){}TE IN AbstractMonoid::AbstractMonoid(M_U m_U,U e_U):AbstractMagma(MO(m_U)),PointedSet(MO(e_U)){} TE CL VirtualGroup:VI PU VirtualMonoid,VI PU VirtualPointedSet,VI PU VirtualNSet{};TE CL AdditiveGroup:VI PU VirtualGroup,PU AdditiveMonoid{PU:IN U Transfer(CO U& u);};TE CL AbstractGroup:VI PU VirtualGroup,PU AbstractMonoid,PU AbstractNSet{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);}; TE IN AbstractGroup::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid(MO(m_U),MO(e_U)),AbstractNSet(MO(i_U)){}TE IN U AdditiveGroup::Transfer(CO U& u){RE -u;} TE CL VirtualRSet:VI PU UnderlyingSet{PU:VI U Action(CO R& r,U u)= 0;IN U Power(U u,CO R& r);IN U ScalarProduct(CO R& r,U u);};TE >CL RegularRSet:VI PU VirtualRSet,PU MAGMA{PU:IN RegularRSet(MAGMA magma);IN U Action(CO U& r,U u);};TE CL AbstractRSet:VI PU VirtualRSet{PU:O_U m_o_U;IN AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U);IN AbstractRSet& OP=(CO AbstractRSet&)NE;IN U Action(CO R& r,U u);};TE >CL AbstractModule:PU AbstractRSet,PU GROUP{PU:IN AbstractModule(CO R& dummy,O_U o_U,GROUP M);};TE CL Module:VI PU VirtualRSet,PU AdditiveGroup{PU:IN U Action(CO R& r,U u);}; TE IN RegularRSet::RegularRSet(MAGMA magma):MAGMA(MO(magma)){}TE IN AbstractRSet::AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U):m_o_U(MO(o_U)){ST_AS(is_invocable_r_v);}TE IN AbstractModule::AbstractModule(CO R& dummy,O_U o_U,GROUP M):AbstractRSet(dummy,M.One(),MO(o_U)),GROUP(MO(M)){ST_AS(is_same_v>);}TE IN AbstractRSet& AbstractRSet::OP=(CO AbstractRSet&)NE{RE *TH;}TE IN U RegularRSet::Action(CO U& r,U u){RE TH->Product(r,MO(u));}TE IN U AbstractRSet::Action(CO R& r,U u){RE m_o_U(r,MO(u));}TE IN U Module::Action(CO R& r,U u){RE MO(u *= r);}TE IN U VirtualRSet::Power(U u,CO R& r){RE Action(r,MO(u));}TE IN U VirtualRSet::ScalarProduct(CO R& r,U u){RE Action(r,MO(u));} #endif #ifdef DEBUG #include "c:/Users/user/Documents/Programming/Mathematics/Algebra/Monoid/Semilattice/a_Body.hpp" #else TE CL VirtualMeetSemilattice:VI PU VirtualMonoid{PU:IN U Meet(U u0,CO U& u1);};TE CL MinSemilattice:VI PU VirtualMeetSemilattice,PU PointedSet{PU:IN MinSemilattice(U infty_U);IN U Product(U u0,CO U& u1);};TE CL MaxSemilattice:VI PU VirtualMeetSemilattice,PU PointedSet{PU:IN MaxSemilattice(U zero_U);IN U Product(U u0,CO U& u1);}; TE IN U VirtualMeetSemilattice::Meet(U u0,CO U& u1){RE TH->Product(MO(u0),u1);}TE IN MinSemilattice::MinSemilattice(U infty_U):PointedSet(MO(infty_U)){}TE IN MaxSemilattice::MaxSemilattice(U zero_U):PointedSet(MO(zero_U)){}TE IN U MinSemilattice::Product(U u0,CO U& u1){RE u0 < u1?MO(u0):u1;}TE IN U MaxSemilattice::Product(U u0,CO U& u1){RE u1 < u0?MO(u0):u1;} #endif #ifdef DEBUG #include "c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/SqrtDecomposition/LazyEvaluation/a_Body.hpp" #else TE CL VirtualBiModule:VI PU UnderlyingSet{PU:VI U LAction(CO L& l,U u)= 0;VI U RAction(U u,CO R& r)= 0;IN U ScalarProduct(CO L& l,U u);IN U PW(U u,CO R& r);};TE CL AbstractBiModule:PU VirtualBiModule,PU GROUP{PU:O_U_L m_o_U_L;O_U_R m_o_U_R;IN AbstractBiModule(CO L& dummy_l,CO R& dummy_r,O_U_L o_U_L,O_U_R o_U_R,GROUP M);IN AbstractBiModule& OP=(CO AbstractBiModule&)NE;IN U LAction(CO L& l,U u);IN U RAction(U u,CO R& r);};TE AbstractBiModule(CO L& dummy_l,CO R& dummy_r,O_U_L o_U_L,O_U_R o_U_R,GROUP M)-> AbstractBiModule,O_U_L,O_U_R,GROUP>;TE CL BiModule:VI PU VirtualBiModule,PU AdditiveGroup{PU:IN U LAction(CO L& r,U u);IN U RAction(U u,CO R& r);}; TE IN AbstractBiModule::AbstractBiModule(CO L& dummy_l,CO R& dummy_r,O_U_L o_U_L,O_U_R o_U_R,GROUP M):GROUP(MO(M)),m_o_U_L(MO(o_U_L)),m_o_U_R(MO(o_U_R)){ST_AS(is_same_v> && is_invocable_r_v && is_invocable_r_v);}TE IN U AbstractBiModule::LAction(CO L& l,U u){RE m_o_U_L(l,MO(u));}TE IN U BiModule::LAction(CO L& l,U u){RE MO(u *= l);}TE IN U AbstractBiModule::RAction(U u,CO R& r){RE m_o_U_R(MO(u),r);}TE IN U BiModule::RAction(U u,CO R& r){RE MO(u *= r);}TE IN U VirtualBiModule::ScalarProduct(CO L& l,U u){RE LAction(l,MO(u));}TE IN U VirtualBiModule::PW(U u,CO R& r){RE RAction(MO(u),r);} CL SqrtDecompositionCoordinate{PU:int m_N;int m_N_sqrt;int m_N_d;int m_N_m;IN SqrtDecompositionCoordinate(CRI N = 0);IN SqrtDecompositionCoordinate(CRI N,CRI N_sqrt);IN CRI size()CO NE;IN CRI BucketSize()CO NE;IN CRI BucketCount()CO NE;}; IN SqrtDecompositionCoordinate::SqrtDecompositionCoordinate(CRI N):SqrtDecompositionCoordinate(N,RoundUpSqrt(N)){};IN SqrtDecompositionCoordinate::SqrtDecompositionCoordinate(CRI N,CRI N_sqrt):m_N(N),m_N_sqrt(N_sqrt),m_N_d((m_N + m_N_sqrt - 1)/ m_N_sqrt),m_N_m(m_N_d * m_N_sqrt){}IN CRI SqrtDecompositionCoordinate::size()CO NE{RE m_N;}IN CRI SqrtDecompositionCoordinate::BucketSize()CO NE{RE m_N_sqrt;}IN CRI SqrtDecompositionCoordinate::BucketCount()CO NE{RE m_N_d;} #define SFINAE_FOR_SD_S enable_if_t>* TE CL LazySqrtDecomposition:PU SqrtDecompositionCoordinate{PU:PT_MAGMA m_L;RN_BIMODULE m_M;VE m_a;VE m_b;VE m_lazy_substitution;VE m_suspended;VE m_lazy_action;TE IN LazySqrtDecomposition(PT_MAGMA L,RN_BIMODULE M,CRI N = 0,CO Args&... args);TE IN LazySqrtDecomposition(PT_MAGMA L,RN_BIMODULE M,VE a,CO Args&... args);TE IN VO Initialise(Args&&... args);IN VO Set(CRI i,CO U& u);IN VO IntervalSet(CRI i_start,CRI i_final,CO U& u);IN VO IntervalAct(CRI i_start,CRI i_final,CO R& r);IN U OP[](CRI i);IN U Get(CRI i);IN U IntervalProduct(CRI i_start,CRI i_final);TE IN int Search(CRI i_start,CO F& f,CO bool& reversed = false);IN int Search(CRI i_start,CO U& u,CO bool& reversed = false);IN VO COruct();IN VO SetProduct(CRI i);IN VO SolveSuspendedSubstitution(CRI d,CO U& u);IN VO IntervalSet_Body(CRI i_min,CRI i_ulim,CO U& u);IN VO SolveSuspendedAction(CRI d);IN VO IntervalAct_Body(CRI i_min,CRI i_ulim,CO R& r);IN U IntervalProduct_Body(CRI i_min,CRI i_ulim);TE int Search_Body(CRI i_start,CO F& f,U product_temp);TE int SearchReverse_Body(CRI i_final,CO F& f,U sum_temp);};TE LazySqrtDecomposition(PT_MAGMA L,RN_BIMODULE M,CO Args&... args)-> LazySqrtDecomposition,PT_MAGMA,inner_t,RN_BIMODULE>; TE TE IN LazySqrtDecomposition::LazySqrtDecomposition(PT_MAGMA L,RN_BIMODULE M,CRI N,CO Args&... args):SqrtDecompositionCoordinate(N,args...),m_L(MO(L)),m_M(MO(M)),m_a(N,m_M.One()),m_b(m_N_d,m_M.One()),m_lazy_substitution(m_b),m_suspended(m_N_d),m_lazy_action(m_N_d,m_L.Point()){COruct();}TE TE IN LazySqrtDecomposition::LazySqrtDecomposition(PT_MAGMA L,RN_BIMODULE M,VE a,CO Args&... args):SqrtDecompositionCoordinate(a.SZ(),args...),m_L(MO(L)),m_M(MO(M)),m_a(MO(a)),m_b(m_N_d,m_M.One()),m_lazy_substitution(m_b),m_suspended(m_N_d),m_lazy_action(m_N_d,m_L.Point()){COruct();}TE IN VO LazySqrtDecomposition::COruct(){ST_AS(is_same_v> && is_same_v>);m_a.resize(m_N_m,m_M.One());int i_min = 0;int i_ulim = m_N_sqrt;for(int d = 0;d < m_N_d;d++){U& m_bd = m_b[d];for(int i = i_min;i < i_ulim;i++){m_bd = m_M.Product(MO(m_bd),m_a[i]);}i_min = i_ulim;i_ulim += m_N_sqrt;}}TE TE IN VO LazySqrtDecomposition::Initialise(Args&&...args){LazySqrtDecomposition temp{m_L,m_M,forward(args)...};SqrtDecompositionCoordinate::OP=(temp);m_a = MO(temp.m_a);m_b = MO(temp.m_b);m_lazy_substitution = MO(temp.m_lazy_substitution);m_suspended = MO(temp.m_suspended);m_lazy_action = MO(temp.m_lazy_action);}TE IN VO LazySqrtDecomposition::Set(CRI i,CO U& u){CO int d = i / m_N_sqrt;CO int i_min = d * m_N_sqrt;CO int i_ulim = i_min + m_N_sqrt;U& m_ai = m_a[i];if(m_suspended[d]){U& m_lazy_substitution_d = m_lazy_substitution[d];if(m_lazy_substitution_d != u){SolveSuspendedSubstitution(d,m_lazy_substitution_d);m_ai = u;m_b[d]= m_M.Product(m_M.Product(m_M.Power(m_lazy_substitution_d,i - i_min),u),m_M.Power(m_lazy_substitution_d,i_ulim -(i + 1)));}}else{SolveSuspendedAction(d);if(m_ai != u){m_ai = u;SetProduct(d);}}RE;}TE IN VO LazySqrtDecomposition::IntervalSet(CRI i_start,CRI i_final,CO U& u){CO int i_min = max(i_start,0);CO int i_ulim = min(i_final + 1,m_N);CO int d_0 =(i_min + m_N_sqrt - 1)/ m_N_sqrt;CO int d_1 = max(d_0,i_ulim / m_N_sqrt);CO int d_0_N_sqrt = d_0 * m_N_sqrt;CO int d_1_N_sqrt = d_1 * m_N_sqrt;CO int i_0 = min(d_0_N_sqrt,i_ulim);CO int i_1 = max(i_0,d_1_N_sqrt);if(i_min < i_0){CO int d_0_minus = d_0 - 1;CO int d_0_N_sqrt_minus = d_0_N_sqrt - m_N_sqrt;U& m_bd = m_b[d_0_minus];VE::reference m_suspended_d = m_suspended[d_0_minus];if(m_suspended_d){U& m_lazy_substitution_d = m_lazy_substitution[d_0_minus];IntervalSet_Body(d_0_N_sqrt_minus,i_min,m_lazy_substitution_d);IntervalSet_Body(i_min,i_0,u);IntervalSet_Body(i_0,d_0_N_sqrt,m_lazy_substitution_d);m_suspended_d = false;m_bd = m_M.Product(m_M.Product(m_M.Power(m_lazy_substitution_d,i_min - d_0_N_sqrt_minus),m_M.Power(u,i_0 - i_min)),m_M.Power(m_lazy_substitution_d,d_0_N_sqrt - i_0));}else{SolveSuspendedAction(d_0_minus);IntervalSet_Body(i_min,i_0,u);m_bd = m_M.Product(m_M.Product(IntervalProduct_Body(d_0_N_sqrt_minus,i_min),m_M.Power(u,i_0 - i_min)),IntervalProduct_Body(i_0,d_0_N_sqrt));}}CO U pw = m_M.Power(u,m_N_sqrt);for(int d = d_0;d < d_1;d++){m_b[d]= pw;m_lazy_substitution[d]= u;m_suspended[d]= true;m_lazy_action[d]= m_L.Point();}if(i_1 < i_ulim){CO int d_1_N_sqrt_plus = d_1_N_sqrt + m_N_sqrt;U& m_bd = m_b[d_1];VE::reference m_suspended_d = m_suspended[d_1];if(m_suspended_d){CO U& m_lazy_substitution_d = m_lazy_substitution[d_1];IntervalSet_Body(d_1_N_sqrt,i_1,m_lazy_substitution_d);IntervalSet_Body(i_1,i_ulim,u);IntervalSet_Body(i_ulim,d_1_N_sqrt_plus,m_lazy_substitution_d);m_suspended_d = false;m_bd = m_M.Product(m_M.Product(m_M.Power(m_lazy_substitution_d,i_1 - d_1_N_sqrt),m_M.Power(u,i_ulim - i_1)),m_M.Power(m_lazy_substitution_d,d_1_N_sqrt_plus - i_ulim));}else{SolveSuspendedAction(d_1);IntervalSet_Body(i_1,i_ulim,u);m_bd = m_M.Product(m_M.Product(IntervalProduct_Body(d_1_N_sqrt,i_1),m_M.Power(u,i_ulim - i_1)),IntervalProduct_Body(i_ulim,d_1_N_sqrt_plus));}}RE;}TE IN VO LazySqrtDecomposition::IntervalAct(CRI i_start,CRI i_final,CO R& r){if(r != m_L.Point()){CO int i_min = max(i_start,0);CO int i_ulim = min(i_final + 1,m_N);CO int d_0 =(i_min + m_N_sqrt - 1)/ m_N_sqrt;CO int d_1 = max(d_0,i_ulim / m_N_sqrt);CO int d_0_N_sqrt = d_0 * m_N_sqrt;CO int d_1_N_sqrt = d_1 * m_N_sqrt;CO int i_0 = min(d_0_N_sqrt,i_ulim);CO int i_1 = max(i_0,d_1_N_sqrt);if(i_min < i_0){CO int d_0_minus = d_0 - 1;CO int d_0_N_sqrt_minus = d_0_N_sqrt - m_N_sqrt;VE::reference m_suspended_d = m_suspended[d_0_minus];if(m_suspended_d){CO U& m_lazy_substitution_d = m_lazy_substitution[d_0_minus];U& m_bd = m_b[d_0_minus];CO U u = m_M.ScalarProduct(r,m_lazy_substitution_d);IntervalSet_Body(d_0_N_sqrt_minus,i_min,m_lazy_substitution_d);IntervalSet_Body(i_min,i_0,u);IntervalSet_Body(i_0,d_0_N_sqrt,m_lazy_substitution_d);m_suspended_d = false;m_bd = m_M.Product(m_M.Product(m_M.Power(m_lazy_substitution_d,i_min - d_0_N_sqrt_minus),m_M.Power(u,i_0 - i_min)),m_M.Power(m_lazy_substitution_d,d_0_N_sqrt - i_0));}else{R& m_lazy_action_d = m_lazy_action[d_0_minus];if(m_lazy_action_d == m_L.Point()){IntervalAct_Body(i_min,i_0,r);}else{IntervalAct_Body(d_0_N_sqrt_minus,i_min,m_lazy_action_d);IntervalAct_Body(i_min,i_0,m_L.Product(r,m_lazy_action_d));IntervalAct_Body(i_0,d_0_N_sqrt,m_lazy_action_d);m_lazy_action_d = m_L.Point();}SetProduct(d_0_minus);}}for(int d = d_0;d < d_1;d++){U& m_bd = m_b[d];m_bd = m_M.ScalarProduct(r,m_bd);if(m_suspended[d]){U& m_lazy_substitution_d = m_lazy_substitution[d];m_lazy_substitution_d = m_M.ScalarProduct(r,m_lazy_substitution_d);}else{R& m_lazy_action_d = m_lazy_action[d];m_lazy_action_d = m_L.Product(r,m_lazy_action_d);}}if(i_1 < i_ulim){CO int d_1_N_sqrt_plus = d_1_N_sqrt + m_N_sqrt;VE::reference m_suspended_d = m_suspended[d_1];if(m_suspended_d){CO U& m_lazy_substitution_d = m_lazy_substitution[d_1];U& m_bd = m_b[d_1];CO U u = m_M.ScalarProduct(r,m_lazy_substitution_d);IntervalSet_Body(d_1_N_sqrt,i_1,m_lazy_substitution_d);IntervalSet_Body(i_1,i_ulim,u);IntervalSet_Body(i_ulim,d_1_N_sqrt_plus,m_lazy_substitution_d);m_suspended_d = false;m_bd = m_M.Product(m_M.Product(m_M.Power(m_lazy_substitution_d,i_1 - d_1_N_sqrt),m_M.Power(u,i_ulim - i_1)),m_M.Power(m_lazy_substitution_d,d_1_N_sqrt_plus - i_ulim));}else{R& m_lazy_action_d = m_lazy_action[d_1];if(m_lazy_action_d == m_L.Point()){IntervalAct_Body(i_1,i_ulim,r);SetProduct(d_1);}else{IntervalAct_Body(d_1_N_sqrt,i_1,m_lazy_action_d);IntervalAct_Body(i_1,i_ulim,m_L.Product(r,m_lazy_action_d));IntervalAct_Body(i_ulim,d_1_N_sqrt_plus,m_lazy_action_d);m_lazy_action_d = m_L.Point();SetProduct(d_1);}}}}RE;}TE IN U LazySqrtDecomposition::IntervalProduct_Body(CRI i_min,CRI i_ulim){U AN = m_M.One();for(int i = i_min;i < i_ulim;i++){AN = m_M.Product(MO(AN),m_a[i]);}RE AN;}TE IN VO LazySqrtDecomposition::SetProduct(CRI d){U& m_bd = m_b[d]= m_M.One();CO int i_min = d * m_N_sqrt;CO int i_ulim = i_min + m_N_sqrt;for(int i = i_min;i < i_ulim;i++){m_bd = m_M.Product(MO(m_bd),m_a[i]);}RE;}TE IN VO LazySqrtDecomposition::SolveSuspendedSubstitution(CRI d,CO U& u){CO int i_min = d * m_N_sqrt;IntervalSet_Body(i_min,i_min + m_N_sqrt,u);m_suspended[d]= false;RE;}TE IN VO LazySqrtDecomposition::IntervalSet_Body(CRI i_min,CRI i_ulim,CO U& u){for(int i = i_min;i < i_ulim;i++){m_a[i]= u;}RE;}TE IN VO LazySqrtDecomposition::SolveSuspendedAction(CRI d){R& m_lazy_action_d = m_lazy_action[d];if(m_lazy_action_d != m_L.Point()){CO int i_min = d * m_N_sqrt;CO int i_ulim = i_min + m_N_sqrt;IntervalAct_Body(i_min,i_ulim,m_lazy_action_d);U& m_bd = m_b[d];m_bd = m_M.ScalarProduct(m_lazy_action_d,m_bd);m_lazy_action_d = m_L.Point();}RE;}TE IN U LazySqrtDecomposition::OP[](CRI i){AS(0 <= i && i < m_N);CO int d = i / m_N_sqrt;RE m_suspended[d]?m_lazy_substitution[d]:m_M.ScalarProduct(m_lazy_action[d],m_a[i]);}TE IN U LazySqrtDecomposition::Get(CRI i){RE OP[](i);}TE IN U LazySqrtDecomposition::IntervalProduct(CRI i_start,CRI i_final){CO int i_min = max(i_start,0);CO int i_ulim = min(i_final + 1,m_N);CO int d_0 =(i_min + m_N_sqrt - 1)/ m_N_sqrt;CO int d_1 = max(d_0,i_ulim / m_N_sqrt);CO int i_0 = min(d_0 * m_N_sqrt,i_ulim);CO int i_1 = max(i_0,d_1 * m_N_sqrt);U AN = m_M.One();if(i_min < i_0){CO int d_0_minus = d_0 - 1;AN = m_suspended[d_0_minus]?m_M.Power(m_lazy_substitution[d_0_minus],i_0 - i_min):m_M.ScalarProduct(m_lazy_action[d_0_minus],IntervalProduct_Body(i_min,i_0));}for(int d = d_0;d < d_1;d++){AN = m_M.Product(MO(AN),m_b[d]);}if(i_1 < i_ulim){AN = m_M.Product(MO(AN),m_suspended[d_1]?m_M.Power(m_lazy_substitution[d_1],i_ulim - i_1):m_M.ScalarProduct(m_lazy_action[d_1],IntervalProduct_Body(i_1,i_ulim)));}RE AN;}TE IN VO LazySqrtDecomposition::IntervalAct_Body(CRI i_min,CRI i_ulim,CO R& r){for(int i = i_min;i < i_ulim;i++){U& m_ai = m_a[i];m_ai = m_M.ScalarProduct(r,m_ai);}RE;}TE TE IN int LazySqrtDecomposition::Search(CRI i_start,CO F& f,CO bool& reversed){RE reversed?SearchReverse_Body(i_start,f,m_M.One()):Search_Body(i_start,f,m_M.One());}TE IN int LazySqrtDecomposition::Search(CRI i_start,CO U& u,CO bool& reversed){RE Search(i_start,[&](CO U& product,CRI){RE !(product < u);},reversed);}TE TE int LazySqrtDecomposition::Search_Body(CRI i_start,CO F& f,U product_temp){CO int i_min = max(i_start,0);CO int d_0 = i_min / m_N_sqrt + 1;CO int i_0 = min(d_0 * m_N_sqrt,m_N);if(i_min < i_0){CO int d_0_minus = d_0 - 1;if(m_suspended[d_0_minus]){SolveSuspendedSubstitution(d_0_minus,m_lazy_substitution[d_0_minus]);}else{SolveSuspendedAction(d_0_minus);}}for(int i = i_min;i < i_0;i++){product_temp = m_M.Product(MO(product_temp),m_a[i]);if(f(product_temp,i)){RE i;}}for(int d = d_0;d < m_N_d;d++){U product_next = m_M.Product(product_temp,m_b[d]);if(f(product_next,min((d + 1)* m_N_sqrt,m_N)- 1)){RE Search_Body(d * m_N_sqrt,f,MO(product_temp));}product_temp = MO(product_next);}RE -1;}TE TE int LazySqrtDecomposition::SearchReverse_Body(CRI i_final,CO F& f,U product_temp){CO int i_max = min(i_final,m_N - 1);CO int d_1 = i_max / m_N_sqrt;CO int i_1 = max(d_1 * m_N_sqrt,0);if(m_suspended[d_1]){SolveSuspendedSubstitution(d_1,m_lazy_substitution[d_1]);}else{SolveSuspendedAction(d_1);}for(int i = i_max;i >= i_1;i--){product_temp = m_M.Product(m_a[i],product_temp);if(f(product_temp,i)){RE i;}}for(int d = d_1 - 1;d >= 0;d--){U product_next = m_M.Product(m_b[d],product_temp);if(f(product_next,d * m_N_sqrt)){RE Search_Body((d + 1)* m_N_sqrt - 1,f,MO(product_temp));}product_temp = MO(product_next);}RE -1;} #endif // AAA ライブラリは以上に挿入する。 #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_LIBRARY #ifdef DEBUG #define _GLIBCXX_DEBUG #define SIGNAL signal( SIGABRT , &AlertAbort ); #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE2 ) #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define CERRNS( ... ) VariadicCoutNonSep( cerr , __VA_ARGS__ ) #define CERR_A( I , N , A ) CoutArray( cerr , I , N , A ) << endl int exec_mode = 0; #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define SIGNAL #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 ) #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #define CERR( ... ) #define CERRNS( ... ) #define CERR_A( I , N , A ) #endif #ifdef REACTIVE #ifdef DEBUG #define RSET( A , ... ) A = __VA_ARGS__ #else #define RSET( A , ... ) cin >> A #endif #define RCIN( LL , A , ... ) LL A; RSET( A , __VA_ARGS__ ) #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_SEPARATE( SEPARATOR , ... ) VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define SET( ... ) SET_SEPARATE( '\n' , __VA_ARGS__ ) #define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; SET_SEPARATE( SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #define FINISH_MAIN GETLINE( test_case_num_str ); test_case_num = stoi( test_case_num_str ); ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } CHECK_REDUNDANT_INPUT; } #else #define SET( ... ) VariadicCin( cin , __VA_ARGS__ ) #define CIN( LL , ... ) LL __VA_ARGS__; SET( __VA_ARGS__ ) #define SET_A( I , N , ... ) VariadicResize( N + I , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A + I , __VA_ARGS__ ); } #define CIN_A( LL , I , N , ... ) VE __VA_ARGS__; SET_A( I , N , __VA_ARGS__ ) #define CIN_AA( LL , I0 , N0 , I1 , N1 , VAR ) VE> VAR( N0 + I0 ); FOR( VARIABLE_FOR_CIN_AA , 0 , N0 ){ SET_A( I1 , N1 , VAR[VARIABLE_FOR_CIN_AA + I0] ); } #define FINISH_MAIN SET_ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } CHECK_REDUNDANT_INPUT; } #endif #include using namespace std; #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ); SIGNAL; #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , test_case_num_bound , BOUND ); int test_case_num = 1; if constexpr( test_case_num_bound > 1 ){ CERR( "テストケースの個数を入力してください。" ); FINISH_MAIN; #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now(); double loop_average_time = 0.0 , loop_start_time = loop_average_time , current_time = loop_start_time; int loop_count = current_time; assert( loop_count == 0 ) #define CURRENT_TIME ( current_time = static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME , loop_count == 0 ? loop_start_time = current_time : loop_average_time = ( current_time - loop_start_time ) / loop_count , ++loop_count , current_time < TL_MS - loop_average_time * 2 - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_ASSERT( A , MIN , MAX ) SET( A ); ASSERT( A , MIN , MAX ) #define SET_A_ASSERT( I , N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A + I] , MIN , MAX ); } #define SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_AA0 , 0 , N0 ){ FOR( VARIABLE_FOR_SET_AA1 , 0 , N1 ){ SET_ASSERT( A[VARIABLE_FOR_SET_AA0 + I0][VARIABLE_FOR_SET_AA1 + I1] , MIN , MAX ); } } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( I , N , A , MIN , MAX ) vector A( N + I ); SET_A_ASSERT( I , N , A , MIN , MAX ) #define CIN_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) vector A( N0 + I0 , vector( N1 + I1 ) ); SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) #define PR1( A1 , ... ) A1 #define PR2( A1 , A2 , ... ) A2 #define PR3( A1 , A2 , A3 , ... ) A3 #define FOR_( VAR , INITIAL , FINAL , UPPER , COMP , INCR ) for( decldecay_t( UPPER ) VAR = INITIAL ; VAR COMP ( FINAL ) ; VAR INCR ) #define FOR( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , PR1( __VA_ARGS__ ) , < , PR3( __VA_ARGS__ , += PR2( __VA_ARGS__ , ? ) , ++ ) ) #define FOREQ( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , PR1( __VA_ARGS__ ) , <= , PR3( __VA_ARGS__ , += PR2( __VA_ARGS__ , ? ) , ++ ) ) #define FOREQINV( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , INITIAL , + 1 > , PR3( __VA_ARGS__ , -= PR2( __VA_ARGS__ , ? ) , -- ) ) #define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define RUN( ARRAY , ... ) for( auto&& __VA_ARGS__ : ARRAY ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ); cerr << fixed << setprecision( DECIMAL_DIGITS ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define COUTNS( ... ) VariadicCoutNonSep( cout , __VA_ARGS__ ) #define COUT_A( I , N , A ) CoutArray( cout , I , N , A ) << ENDL #define DERR( ... ) #define DERRNS( ... ) #define DERR_A( I , N , A ) #define WHAT( ... ) #define RETURN( ... ) COUT( __VA_ARGS__ ); return // 型のエイリアス #define decldecay_t( VAR ) decay_t template using ret_t = decltype( declval()( declval()... ) ); template using inner_t = typename T::type; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; using lld = __float128; using path = pair; /* VVV 常設ライブラリの非圧縮版は以下に挿入する。*/ // Random ll GetRand( const ll& Rand_min , const ll& Rand_max ) { assert( Rand_min <= Rand_max ); ll answer = time( NULL ); return answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; } // Set #define DC_OF_HASH( ... ) DECLARATION_OF_HASH( __VA_ARGS__ ) #define DECLARATION_OF_HASH( ... ) \ struct hash<__VA_ARGS__> \ { \ \ inline size_t operator()( const __VA_ARGS__& n ) const; \ \ }; \ #define DEFINITION_OF_POP_FOR_SET( SET ) \ template inline T pop_max( SET& S ) { assert( !S.empty() ); auto itr = --S.end(); T answer = *itr; S.erase( itr ); return answer; } \ template inline T pop_min( SET& S ) { assert( !S.empty() ); auto itr = S.begin(); T answer = *itr; S.erase( itr ); return answer; } \ template inline SET& operator<<=( SET& S , T t ) { S.insert( move( t ) ); return S; } \ template inline SET& operator<<=( SET& S , U&& u ) { S.insert( T{ forward( u ) } ); return S; } \ template inline SET& operator>>=( SET& S , const T& t ) { auto itr = S.lower_bound( t ); assert( itr != S.end() && *itr == t ); S.erase( itr ); return S; } \ template inline SET& operator>>=( SET& S , const U& u ) { return S >>= T{ u }; } \ template inline const T& Get( const SET& S , int i ) { auto begin = S.begin() , end = S.end(); auto& itr = i < 0 ? ( ++i , --end ) : begin; while( i > 0 && itr != end ){ --i; ++itr; } while( i < 0 && itr != begin ){ ++i; --itr; } assert( i == 0 ); return *itr; } \ #define DEFINITION_OF_UNION_FOR_SET( SET ) \ template inline SET& operator|=( SET& S0 , SET S1 ) { S0.merge( move( S1 ) ); return S0; } \ template inline SET operator|( SET S0 , SET S1 ) { return move( S0.size() < S1.size() ? S1 |= move( S0 ) : S0 |= move( S1 ) ); } \ class is_ordered { private: is_ordered() = delete; template static constexpr auto Check( const T& t ) -> decltype( t < t , true_type() ); static constexpr false_type Check( ... ); public: template static constexpr const bool value = is_same_v< decltype( Check( declval() ) ) , true_type >; }; template using Set = conditional_t>,unordered_set,conditional_t,set,void>>; template inline typename SET::const_iterator MaximumLeq( const SET& S , const T& t ) { auto itr = S.upper_bound( t ); return itr == S.begin() ? S.end() : --itr; } template inline typename SET::const_iterator MaximumLt( const SET& S , const T& t ) { auto itr = S.lower_bound( t ); return itr == S.begin() ? S.end() : --itr; } template inline typename SET::const_iterator MinimumGeq( const SET& S , const T& t ) { return S.lower_bound( t ); } template inline typename SET::const_iterator MinimumGt( const SET& S , const T& t ) { return S.upper_bound( t ); } template inline void EraseBack( SET& S , ITERATOR& itr ) { itr = S.erase( itr ); } template inline void EraseFront( SET& S , ITERATOR& itr ) { itr = S.erase( itr ); itr == S.begin() ? itr = S.end() : --itr; } template