#line 1 "h.cpp" #include using namespace std; #define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++) #line 2 "/Users/Shared/po167_library/math/Binomial.hpp" #line 5 "/Users/Shared/po167_library/math/Binomial.hpp" namespace po167{ template struct Binomial{ std::vector fact_vec, fact_inv_vec; void extend(int m = -1){ int n = fact_vec.size(); if (m == -1) m = n * 2; if (n >= m) return; fact_vec.resize(m); fact_inv_vec.resize(m); for (int i = n; i < m; i++){ fact_vec[i] = fact_vec[i - 1] * T(i); } fact_inv_vec[m - 1] = T(1) / fact_vec[m - 1]; for (int i = m - 1; i > n; i--){ fact_inv_vec[i - 1] = fact_inv_vec[i] * T(i); } } Binomial(int MAX = 0){ fact_vec.resize(1, T(1)); fact_inv_vec.resize(1, T(1)); extend(MAX + 1); } T fact(int i){ if (i < 0) return 0; while (int(fact_vec.size()) <= i) extend(); return fact_vec[i]; } T invfact(int i){ if (i < 0) return 0; while (int(fact_inv_vec.size()) <= i) extend(); return fact_inv_vec[i]; } T C(int a, int b){ if (a < b || b < 0) return 0; return fact(a) * invfact(b) * invfact(a - b); } T invC(int a, int b){ if (a < b || b < 0) return 0; return fact(b) * fact(a - b) *invfact(a); } T P(int a, int b){ if (a < b || b < 0) return 0; return fact(a) * invfact(a - b); } T inv(int a){ if (a < 0) return inv(-a) * T(-1); if (a == 0) return 1; return fact(a - 1) * invfact(a); } T Catalan(int n){ if (n < 0) return 0; return fact(2 * n) * invfact(n + 1) * invfact(n); } T narayana(int n, int k){ if (n <= 0 || n < k || k < 1) return 0; return C(n, k) * C(n, k - 1) * inv(n); } T Catalan_pow(int n,int d){ if (n < 0 || d < 0) return 0; if (d == 0){ if (n == 0) return 1; return 0; } return T(d) * inv(d + n) * C(2 * n + d - 1, n); } // retrun [x^a] 1/(1-x)^b T ruiseki(int a,int b){ if (a < 0 || b < 0) return 0; if (a == 0){ return 1; } return C(a + b - 1, b - 1); } // (a, b) -> (c, d) // always x + e >= y T mirror(int a, int b, int c, int d, int e = 0){ if (a + e < b || c + e < d) return 0; if (a > c || b > d) return 0; a += e; c += e; return C(c + d - a - b, c - a) - C(c + d - a - b, c - b + 1); } // return sum_{i = 0, ... , a} sum_{j = 0, ... , b} C(i + j, i) // return C(a + b + 2, a + 1) - 1; T gird_sum(int a, int b){ if (a < 0 || b < 0) return 0; return C(a + b + 2, a + 1) - 1; } // return sum_{i = a, ..., b - 1} sum_{j = c, ... , d - 1} C(i + j, i) // AGC 018 E T gird_sum_2(int a, int b, int c, int d){ if (a >= b || c >= d) return 0; a--, b--, c--, d--; return gird_sum(a, c) - gird_sum(a, d) - gird_sum(b, c) + gird_sum(b, d); } // the number of diagonal dissections of a convex n-gon into k+1 regions. // OEIS A033282 // AGC065D T diagonal(int n, int k){ if (n <= 2 || n - 3 < k || k < 0) return 0; return C(n - 3, k) * C(n + k - 1, k) * inv(k + 1); } }; } #line 2 "/Users/Shared/po167_library/fps/FPS_online_convolution.hpp" #include namespace po167{ template struct FPS_online_convolution{ std::vector f, g, h, iz; std::vector> f_inv, g_inv; int p; FPS_online_convolution() : f(0), g(0), h(0), iz(0), p(0){} T query(T fi, T gi){ if (p == 0){ f = {fi}; g = {gi}; h = {fi * gi}; return h[p++]; } int z = 0; while ((p & (1 << z)) == 0) z++; if (p == (1 << z)){ f.resize(p * 2, 0); g.resize(p * 2, 0); h.resize(p * 2, 0); } f[p] = fi; g[p] = gi; int l = p - (1 << z); int m = p; int r = p + (1 << z); // [l, m) -> [m, r) std::vector tmp3(r - l); if (l == 0){ f_inv.push_back({}); g_inv.push_back({}); iz.push_back((T)(1) / (T)(r - l)); } for (int rp = 0; rp < 2; rp++){ std::swap(f, g); std::swap(f_inv, g_inv); if (l == 0 && rp == 1) break; std::vector tmp1(r - l), tmp2(r - l); for (int i = l; i < m; i++){ tmp1[i - l] = f[i]; } atcoder::internal::butterfly(tmp1); if (l == 0) { for (int i = 0; i < r - l; i++) { if (i == 0) continue; if (m <= i) break; tmp2[i] = g[i]; } atcoder::internal::butterfly(tmp2); } else{ if (g_inv[z].empty()){ g_inv[z].resize((1 << (z + 1))); for (int i = 0; i < (1 << (z + 1)); i++){ if (i) g_inv[z][i] = g[i]; else g_inv[z][i] = 0; } atcoder::internal::butterfly(g_inv[z]); } tmp2 = g_inv[z]; } for (int i = 0; i < r - l; i++) tmp3[i] += tmp1[i] * tmp2[i]; } atcoder::internal::butterfly_inv(tmp3); for (int i = m; i < r; i++) h[i] += tmp3[i - l] * iz[z]; h[p] += f[0] * g[p]; h[p] += f[p] * g[0]; return h[p++]; } }; } #line 7 "h.cpp" using mint = atcoder::modint998244353; void solve(); // DEAR MYSTERIES / TOMOO int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int t = 1; // cin >> t; rep(i, 0, t) solve(); } void solve(){ int N, M; cin >> N >> M; vector p(N); rep(i, 0, M){ int a; cin >> a; p[a - 1] = 1; } po167::Binomial table; int c = 1; mint dp = -2; if (p[0] == 0){ p[0] = 1; c *= -1; } if (p[N - 1] == 0){ p[N - 1] = 1; c *= -1; } po167::FPS_online_convolution oc; rep(i, 1, N){ dp = oc.query(table.fact(i + 1), dp); if (p[i] == 0) dp = 0; else dp *= -2; } mint ans = (dp / 4 + table.fact(N)) / 2; if (c == -1) ans = table.fact(N) - ans; cout << ans.val() << "\n"; }